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Singular Value Decomposition (SVD)

SVD of a matrix X

𝐗n ×d = 𝐔n ×n𝚺n ×d𝐕d ×d
T or

𝐗n ×d = 𝐔n × k𝚺k ×k𝐕k ×d
T

• 𝐗: A set of n points in ℝd with rank k
• 𝐔 : Left Singular Vectors of 𝐗
• 𝐕 : Right Singular Vectors of 𝐗
• 𝚺: Rectangular diagonal matrix with positive real entries.

𝐗 = u1 … uk … un

σ1
⋱

σk

v1
T … vk

T … vd
T

𝐗 = 𝐔𝚺𝐕T = u1σ1v1
T + …+ ukσkvk

T = 

i=1

k

uiσivi
T

Singular Value Decomposition (SVD)

SVD of a matrix X

𝐗 𝐯𝐢 = σi𝐮𝐢
• Finding an orthogonal basis for the row space that gets transformed into an 

orthogonal basis for the column space.

• The columns of 𝐔 and 𝐕 are bases for the row and column spaces, respectively.

• 𝐔 and 𝐕 are orthonormal square matrix i.e
𝐕𝐕T = 𝐕T𝐕 = 𝐈
𝐔𝐔T = 𝐔T𝐔 = 𝐈

• Usually, 𝐔 ≠ 𝐕.
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Motivation

• Goal: Find the best k-dimensional subspace w.r.t 𝐗 (Project 𝐗 to ℝk where 
k < d)
• minimize the sum of the squares of the perpendicular distances of the 

points to the subspace

• Consider a set of 2d points. 𝐗n ×2, 𝐱i ∈
ℝ2; 1 ≤ i ≤ n
• Goal: Find the best fitting line through 

origin w.r.t 𝐗
• Here, k = 1
• Best least square fit

• Minimize σαi
2 or

• Maximize σβi
2 i.e projection of 𝐱i

on subspace

• 𝐯: A unit vector in the direction of the best fitting line through origin w.r.t 𝐗

• βi = |xi . 𝐯|

• Best least square fit
• Maximizing σβi

2 = |𝐗 . 𝐯|2

• First singular vector
• 𝐯1 = argmax

𝐯 =1
|𝐗 . 𝐯|

• First singular value
• 𝜎1 = |𝐗 . 𝐯1|

• Greedy approach for subsequent singular vectors
• Best fit line perpendicular to 𝐯1
• 𝐯2 = arg max

𝐯⊥𝐯1, 𝐯 =1
|𝐗 . 𝐯|

Singular Vectors 𝐗 𝐯𝐢 = σi 𝐮𝐢
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Intuitive 
Interpretation

A composition of three 
geometrical transformations: 
a rotation or reflection, a scaling, 
and another rotation or reflection.

𝐗 = 𝐔 𝚺 𝐕T

• Consider a unit circle
𝐱′. 𝐱′ = 𝟏

• An ellipse of any size and orientation by stretching and rotating it.

• Consider 2-d points and fit an ellipse with major axis (a) and minor 
axes (b) to them.

• Consider,

𝐒 =
a 0
0 b

, 𝐑 =
cos θ sin θ
− sin θ cos θ

• Any point can be transformed as
𝐱′ = 𝐱 𝐑 𝐒−1

• The equation of unit circle
𝐒−1𝐑T𝐱 . 𝐱 𝐑 𝐒−1 = 𝟏

Intuitive Interpretation 𝐗 = 𝐔 𝚺 𝐕T
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• Resulting matrix equation

𝐒−1𝐑T𝐗T𝐗𝐑𝐒−1 = 𝟏

• If we regard 𝐗 as a collection of points, then
• The singular values are the axes of a least squares fitted ellipsoid 

• 𝐕 is orientation of the ellipsoid. 

• The matrix 𝐔 is the projection of each of the points in 𝐗 onto the axes.

Intuitive Interpretation 𝐗 = 𝐔 𝚺 𝐕T

• Natural Language Processing
• Documents with 2 concepts:

• Computer Science (CS)
• Medical Documents (MD)

SVD Example 𝐗n ×d = 𝐔n × k𝚺k ×k𝐕k ×d
T

Term-Document Matrix
Row: 1 Document
Columns: 1 Term

Document-Concept 
Similarity Matrix

Row: 1 Document
Columns: 1 Concept

Concept 
Strength Matrix
Row: 1 Concept

Term-Concept Matrix
Row: 1 Concept
Column: 1 Term
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Eigen Vector

• An eigenvector of a square matrix 𝐗 is a nonzero vector 𝐯 such that 
multiplication by 𝐗 alters only the scale of 𝐯

𝐗𝐯 = λ𝐯
• λ: Eigen value 

• 𝐯: Unit Eigen vector

Eigen Value Decomposition

𝐗 = 𝐕 diag(𝛌)𝐕−1 where
• Eigen vector matrix 𝐕 = [v1, … , vn]

• Diagonal matrix 𝛌 = λ1, … , λn
More general form

𝐗 = 𝐐 𝜦 𝑸𝑇

Eigen value decomposition 𝐗 = 𝐔 𝚺 𝐕T

• Eigen value decomposition: 𝐗 = 𝐐 𝜦 𝑸𝑇

• 𝐗 needs 
• orthonormal eigen vectors to allow 𝐔 = 𝐕 = 𝐐.

• Eigenvalues 𝜆 ≥ 0 if 𝜦 = 𝚺.

• Hence, 𝐗 must be a positive semi-definte (or definite) symmetric 
matrix.

• Eigen value decomposition is a special case of SVD.

When is singular values same as eigen 
values 

𝐗 = 𝐔 𝚺 𝐕T
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Rather than solving for U, V and Σ simultaneously, we multiply both sides by
𝐗T = 𝑽 𝚺T 𝑼T

𝐗T𝐗 = (𝐔 𝚺 𝐕T )T (𝐔 𝚺 𝐕T )

= 𝑽 𝚺T 𝑼T𝐔 𝚺 𝐕T

= 𝑽 𝚺T 𝚺 𝐕T

= 𝑽 𝚺2 𝐕T

This is the form of eigen value decomposition. 𝐗 = 𝐐 𝜦 𝑸𝑇

𝐕: The eigen vectors of 𝐗T𝐗.

𝚺T 𝚺: The eigen value matrix of 𝐗T𝐗.
𝜎𝑖 = λi

U: The eigen vectors of 𝐗𝐗T.

Calculating SVD using Eigen value 
decomposition

𝐗 = 𝐔 𝚺 𝐕T

We know that,

𝐮𝑖
𝑇 𝐮j =

𝐗 𝐯i

σi

T 𝐗 𝐯j

σj

𝐮𝑖
𝑇 𝐮j =

𝐯𝑖
𝑇 𝐗T𝐗𝐯j

σi σj
=

𝐗T𝐗

σi σj
𝐯𝑖
𝑇𝐯j = 0

𝐔: The orthonormal eigen vectors of 𝐗 𝐗T.

We can thus write,

𝐗 𝐗T𝐔 = 𝐔 𝚺𝟐

SVD and Eigen value decomposition 𝐗 𝐯𝐢 = σi 𝐮𝐢
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• Consider 𝐗 =
4 4
−3 3

• Compute 𝐗T𝐗 =
4 −3
4 3

4 4
−3 3

=
25 7
7 25

• Orthogonal Eigen vector of 𝐗T𝐗

• 𝐯1 =
1/ 2

1/ 2
and 𝐯2 =

1/ 2

−1/ 2

• Eigen values of 𝐗T𝐗
• 𝜎1

2 = 32 and 𝜎2
2 = 18

• We have,

4 4
−3 3

=
4 2 0

0 3 2

1/ 2 1/ 2

1/ 2 −1/ 2

Example SVD

• Consider 𝐗 =
4 4
−3 3

• Compute 𝐗 𝐗T =
4 4
−3 3

4 −3
4 3

=
32 0
0 18

• Orthogonal Eigen vector of 𝐗 𝐗T

• 𝐮1 =
1
0

and 𝐮2 =
0
−1

• We have,

4 4
−3 3

=
1 0
0 −1

4 2 0

0 3 2

1/ 2 1/ 2

1/ 2 −1/ 2

Example SVD
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• An eigen-decomposition is valid only for square matrix. Any matrix 
(even rectangular) has an SVD.

• In eigen-decomposition 𝐗 = 𝐐 𝜦 𝑸𝑇 , the eigen-basis (𝐐) is not 
always orthogonal. The basis of singular vectors is always 
orthogonal. 

• In SVD we have two singular-spaces (right and left). 

• Computing the SVD of a matrix is more numerically stable.

SVD vs Eigen Decomposition 

• The covariance matrix of 𝐗 is given by

𝐂𝐨𝐯 = 𝐗T 𝐗/(𝐧 − 𝟏)

• The eigen value decomposition of 𝐂𝐨𝐯 matrix
𝐂𝐨𝐯 = 𝐐 𝜦 𝑸𝑇

Where, 

𝐐 is a matrix of eigenvectors of 𝐂𝐨𝐯 or principal axes of 𝐗

𝜦 is a diagonal matrix with eigenvalues λi in the decreasing order on 
the diagonal.

SVD and PCA 𝐗 = 𝐔 𝚺 𝐕T
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• We can rewrite covariance matrix of 𝐗 as

𝐂𝐨𝐯 = 𝐗T 𝐗/(𝐧 − 𝟏)
𝐂𝐨𝐯 = 𝐕 𝚺 𝐔T𝐔 𝚺 𝐕T/(𝐧 − 𝟏)

= 𝐕
𝚺2

(𝑛 − 1)
𝐕T

• Right singular vector 𝐕 is the principal axes

• λi = Τσi
2 (n − 1)

• 𝐗 𝐕 = 𝐔 𝚺 𝐕T𝐕 = 𝐔 𝚺

• The columns of 𝐔 𝚺 are the principal components.

SVD and PCA 𝐗 = 𝐔 𝚺 𝐕T

• Input Data: 𝐗n ×d
• Goal: Reduce the dimensionality to k where k < d

• Select k first columns of 𝐔, and k × k upper-left part of 𝚺

• Construct 𝐁 = 𝐔k 𝚺k × k

• 𝐁 is the required n × k matrix containing first k PCs.

SVD for dimensionality reduction 𝐗 = 𝐔 𝚺 𝐕T



9/28/2018

11

The best approximation to 𝐗 by a rank deficient matrix is obtained by 
the top singular values and vectors of 𝐗. 

𝐗k =

i=1

k

uiσivi
T

Then,
min

𝐁 ∈ℝn ×d rank 𝐁 ≤k
𝐗 − 𝐁 2 = 𝐗 − 𝐗k 2 = σk+1

σk+1 is the largest singular value of 𝐗 − 𝐗k.

𝐗k is the best rank k 2-norm approximation of 𝐗.

Rank-k approximation in the spectral 
norm

𝐗 =

i=1

𝑑

uiσivi
T

• Determining range, null space and rank (also numerical rank). 

• Matrix approximation. 

• Inverse and Pseudo-inverse: 
• If 𝐗 = 𝐔 𝚺 𝐕T and 𝚺 is full rank, then 𝐗−1 = 𝐕 𝚺−1𝐔T.

• If 𝚺 is singular, then its pseudo-inverse is given by 𝐗† = 𝐕 𝚺†𝐔T , where 

𝚺† is formed by replacing every nonzero entry by its reciprocal.

• Least squares: 
• If we need to solve 𝐀𝐱 = b in the least-squares sense, then 𝐱LS =

𝐕 𝚺†𝐔T b

• Denoising – Small singular values typically correspond to noise. 

Applications of SVD



9/28/2018

12

• Input matrix: term-document matrices
• Rows: represents words.

• Columns: represents documents.

• Value: the count of the words in the document.

• Example:

Latent Semantic Analysis using SVD

𝐗 =

1 1 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 1 1 1 1 1
0 1 0 0 1 0

• Consider 𝐗, the term-document matrix.

• Then, 
• 𝐔 is the SVD term matrix

• 𝐕 is the SVD document matrix

• SVD provides a low rank approximation for 𝐗.

• Constrained optimization problem
• Goal: Represent 𝐗 as 𝐗k with low Frobenius norm for the error 𝐗 - 𝐗k

Latent Semantic Indexing (LSI) 𝐗n ×d = 𝐔n × k𝚺k ×k𝐕k ×d
T
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Latent Semantic Indexing (LSI) 𝐗n ×d = 𝐔n × k𝚺k ×k𝐕k ×d
T

Latent Semantic Indexing (LSI) 𝐗n ×d = 𝐔n × k𝚺k ×k𝐕k ×d
T

k = 2

We can get rid of zero 
valued columns and rows
And have a 2 x 2 concept 
strength matrix

We can get rid of zero 
valued columns
And have a 5 x 2 term-to-
concept similarity matrix

We can get rid of zero 
valued columns
And have a 2 x 6
concept-to-doc 
similarity matrix



9/28/2018

14

Latent Semantic Indexing (LSI)
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Original space Reduced latent semantic space

We see that query is not related to document 2 in the original space but  in the latent semantic space they become 
highly related.

• SVD allow words and documents to be mapped into the same 
"latent semantic space“.

• LSI projects queries and documents into a space with latent 
semantic dimensions.
• Co-occurring words are projected on the same dimensions

• Non-co-occurring words are projected onto different dimensions

• LSI captures similarities between words
• For example, we want to project “car” and “automobile” onto the same 

dimension.

• Dimensions of the reduced semantic space correspond to the axes 
of greatest variation in the original space.

Latent Semantic Indexing (LSI)
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• Extracting information from link structures of a hyperlinked 
environment, rank pages relevant to a topic  

• Essentials:
• Authorities

• Hubs

• Goal: Identify good authorities and hubs for a topic.

• Each page receive two scores, 
• Authority score 𝐴(𝑝): It estimates value of content on page

• Hub score 𝐻(𝑝): It estimates value of links on page

Kleinberg’s Algorithm 
Hyperlink-Induced Topic Search (HITS)
aka ‘hubs and authorities’

• For a topic, authorities 
are relevant nodes 
which are referred by 
many hubs. (high in 
degree)

• For a topic, hubs are 
nodes which connect 
many related 
authorities for that 
topic. (high out 
degree)

Authorities and Hubs
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• Three Steps
1. Create a focused base-set of the Web.

• Start with a root set.

• Add any page pointed by a page in the root set to it.

• Add any page that points to a page in the root set to it  (at most d).

• The extended root set becomes our base set.

2. Iteratively compute hub and authority scores.
• A(p): sum of H q for all q pointing to p.

• H(q): sum of A p for all p pointing to q.

• Starts with all scores as 1, and Iteratively repeat till convergence.

3. Filter out the top hubs and authorities

HITS (cont.)

• G (root set) is a directed graph with web pages 
as nodes and their links.

• G can be presented as a connectivity matrix A
• A(i,j)=1 only if i-th page points to j-th page.

• Authority weights can be represented as a unit 
vector a
• ai The authority weight of the i-th page

• Hub weights can be represented as a unit 
vector  h
• hi : The hub weight of the i-th page

Matrix Notation
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• Updating authority weights:  
a = ATh

• Updating hub weights:
h = Aa

• After k iterations:
a1 = ATh0
h1 = Aa1

→ h1 = AATh0
→ hk = (AAT)kh0

• Convergence
• ak: Converges to principal eigen vector of ATA
• hk: Converges to principal eigen vector of AAT

Algorithm

Given A ∈ ℝ+
n × d and a desired rank k ≪ min(n, d),

Find W ∈ ℝ+
n × k and H ∈ ℝ+

k ×n s.t. A≈ WH.

• min
W≥0,H ≥0

||A −WH||F

• Nonconvex.

• W and H not unique ( e.g. W = WD ≥ 0, H = D−1H ≥ 0) 

Notation: ℝ+ nonnegative real numbers

Nonnegative Matrix Factorization (NMF)
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• SVD gives: A = UΣVT

• Then, A − UΣVT F ≤ min A −WH F

• Then WHY NMF???

• NMF works better in terms of its non-negativity constraints. 
Example in 
• Text mining. (A is represented as counts, so is strictly 

positive.)

Nonnegative Matrix Factorization (NMF)

• https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-
fall-2011/positive-definite-matrices-and-applications/singular-
value-decomposition/MIT18_06SCF11_Ses3.5sum.pdf

• https://archive.siam.org/meetings/sdm11/park.pdf
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