SVD, SVD applications to LSA, non-negative matrix factorizations

Presented By: Sumedha Singla

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

SVD of a matrix \mathbf{X}

$$
\begin{aligned}
& \mathbf{X}_{\mathrm{n} \times \mathrm{d}}=\mathbf{U}_{\mathrm{n} \times \mathrm{n}} \boldsymbol{\Sigma}_{\mathrm{n} \times \mathrm{d}} \mathbf{V}_{\mathrm{d} \times \mathrm{d}}^{\mathrm{T}} \text { or } \\
& \mathbf{X}_{\mathrm{n} \times \mathrm{d}}=\mathbf{U}_{\mathrm{n} \times \mathrm{k}} \boldsymbol{\Sigma}_{\mathrm{k} \times \mathrm{k}} \mathbf{V}_{\mathrm{k} \times \mathrm{d}}^{\mathrm{T}}
\end{aligned}
$$

- X: A set of n points in \mathbb{R}^{d} with rank k
- \mathbf{U} : Left Singular Vectors of \mathbf{X}
- \mathbf{V} : Right Singular Vectors of \mathbf{X}
- $\boldsymbol{\Sigma}$: Rectangular diagonal matrix with positive real entries.

$$
\begin{gathered}
\mathbf{X}=\left[\begin{array}{lllll}
\mathrm{u}_{1} & \ldots & \mathrm{u}_{\mathrm{k}} & \ldots & \mathrm{u}_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{\mathrm{k}}
\end{array}\right]\left[\begin{array}{llll}
\mathrm{v}_{1}^{\mathrm{T}} & \ldots & \mathrm{v}_{\mathrm{k}}^{\mathrm{T}} & \ldots \\
& \mathrm{v}_{\mathrm{d}}^{\mathrm{T}}
\end{array}\right] \\
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}=\mathrm{u}_{1} \sigma_{1} \mathrm{v}_{1}^{\mathrm{T}}+\ldots+\mathrm{u}_{\mathrm{k}} \sigma_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}^{\mathrm{T}}=\sum_{\mathrm{i}=1}^{\mathrm{l}} \mathrm{u}_{\mathrm{i}} \sigma_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}^{\mathrm{T}}
\end{gathered}
$$

Singular Value Decomposition (SVD)

SVD of a matrix \mathbf{X}

$$
\mathbf{X} \mathbf{v}_{\mathbf{i}}=\sigma_{\mathrm{i}} \mathbf{u}_{\mathbf{i}}
$$

- Finding an orthogonal basis for the row space that gets transformed into an orthogonal basis for the column space.
- The columns of \mathbf{U} and \mathbf{V} are bases for the row and column spaces, respectively.
- \mathbf{U} and \mathbf{V} are orthonormal square matrix i.e

$$
\begin{aligned}
& \mathbf{V V}^{\mathrm{T}}=\mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I} \\
& \mathbf{U U}^{\mathrm{T}}=\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I}
\end{aligned}
$$

- Usually, $\mathbf{U} \neq \mathbf{V}$.

Motivation

- Goal: Find the best k-dimensional subspace w.r.t \mathbf{X} (Project \mathbf{X} to \mathbb{R}^{k} where $\mathrm{k}<\mathrm{d}$)
- minimize the sum of the squares of the perpendicular distances of the points to the subspace
- Consider a set of 2d points. $\mathbf{X}_{\mathrm{n} \times 2}, \mathbf{x}_{\mathrm{i}} \in$ $\mathbb{R}^{2} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
- Goal: Find the best fitting line through origin w.r.t \mathbf{X}
- Here, $\mathrm{k}=1$
- Best least square fit
- Minimize $\sum \alpha_{\mathrm{i}}^{2}$ or
- Maximize $\sum \beta_{\mathrm{i}}^{2}$ i.e projection of \mathbf{x}_{i} on subspace

Singular Vectors

- \mathbf{v} : A unit vector in the direction of the best fitting line through origin w.r.t \mathbf{X}
- $\beta_{\mathrm{i}}=\left|\mathrm{x}_{\mathrm{i}} \cdot \mathrm{v}\right|$
- Best least square fit
- Maximizing $\sum \beta_{\mathrm{i}}^{2}=|\mathbf{X} . \mathbf{v}|^{2}$
- First singular vector
- $\mathbf{v}_{1}=\arg \max _{|\mathbf{v}|=1}|\mathbf{X} \cdot \mathbf{v}|$
- First singular value

- $\sigma_{1}=\left|\mathbf{X} \cdot \mathbf{v}_{1}\right|$
- Greedy approach for subsequent singular vectors
- Best fit line perpendicular to \mathbf{v}_{1}
- $\mathbf{v}_{2}=\arg \max _{\mathbf{v} \perp \mathbf{v}_{1},|\mathbf{v}|=1}|\mathbf{X} . \mathbf{v}|$

Intuitive Interpretation

$\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$

- Consider a unit circle

$$
\mathbf{x}^{\prime} \cdot \mathbf{x}^{\prime}=\mathbf{1}
$$

- An ellipse of any size and orientation by stretching and rotating it.
- Consider 2-d points and fit an ellipse with major axis (a) and minor axes (b) to them.
- Consider,

$$
\mathbf{S}=\left[\begin{array}{cc}
\mathrm{a} & 0 \\
0 & \mathrm{~b}
\end{array}\right], \mathbf{R}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

- Any point can be transformed as

$$
\mathbf{x}^{\prime}=\mathbf{x} \mathbf{R ~ S}^{-1}
$$

- The equation of unit circle

$$
\mathbf{S}^{-1} \mathbf{R}^{\mathrm{T}} \mathbf{x} \cdot \mathbf{x} \mathbf{R} \mathbf{S}^{-1}=\mathbf{1}
$$

Intuitive Interpretation

- Resulting matrix equation

$$
\mathbf{S}^{-1} \mathbf{R}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X R S}^{-1}=\mathbf{1}
$$

- If we regard \mathbf{X} as a collection of points, then

- The singular values are the axes of a least squares fitted ellipsoid
- \mathbf{V} is orientation of the ellipsoid.
- The matrix \mathbf{U} is the projection of each of the points in \mathbf{X} onto the axes.

SVD Example

$\mathbf{X}_{\mathrm{n} \times \mathrm{d}}=\mathbf{U}_{\mathrm{n} \times \mathrm{k}} \boldsymbol{\Sigma}_{\mathrm{k} \times \mathrm{k}} \mathbf{V}_{\mathrm{k} \times \mathrm{d}}^{\mathrm{T}}$

- Natural Language Processing
- Documents with 2 concepts:
- Computer Science (CS)
- Medical Documents (MD)

Concept Strength Matrix
Row: 1 Concept
$\mathrm{X}\left[\begin{array}{ll}9.64 \\ 0 & 5.29\end{array}\right] \times\left[\begin{array}{lllll}0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0 & 0.71 & 0.71\end{array}\right]$
Term-Concept Matrix
Row: 1 Concept
Column: 1 Term

Term-Document Matrix Row: 1 Document Columns: 1 Term

Document-Concept
Similarity Matrix
Row: 1 Document
Columns: 1 Concept

Eigen value decomposition

$\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$

Eigen Vector

- An eigenvector of a square matrix \mathbf{X} is a nonzero vector \mathbf{v} such that multiplication by \mathbf{X} alters only the scale of \mathbf{v}

$$
\mathbf{X v}=\lambda \mathbf{v}
$$

- λ : Eigen value
- v: Unit Eigen vector

Eigen Value Decomposition

$$
\mathbf{X}=\mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1} \text { where }
$$

- Eigen vector matrix $\mathbf{V}=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right]$
- Diagonal matrix $\boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{n}\right]$

More general form

$$
\mathbf{X}=\mathbf{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}
$$

When is singular values same as eigen values

- Eigen value decomposition: $\mathbf{X}=\mathbf{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$
- \mathbf{X} needs
- orthonormal eigen vectors to allow $\mathbf{U}=\mathbf{V}=\mathbf{Q}$.
- Eigenvalues $\lambda \geq 0$ if $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}$.
- Hence, \mathbf{X} must be a positive semi-definte (or definite) symmetric matrix.
- Eigen value decomposition is a special case of SVD.

Calculating SVD using Eigen value decomposition

$\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$

Rather than solving for U, V and Σ simultaneously, we multiply both sides by

$$
\mathbf{X}^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}}
$$

$$
\begin{aligned}
\mathbf{X}^{\mathrm{T}} \mathbf{X} & =\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}\right)^{\mathrm{T}}\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}\right) \\
& =\boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \\
& =\boldsymbol{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \\
& =\boldsymbol{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\mathrm{T}}
\end{aligned}
$$

This is the form of eigen value decomposition. $\mathbf{X}=\mathbf{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$
\mathbf{V} : The eigen vectors of $\mathbf{X}^{\mathrm{T}} \mathbf{X}$.
$\boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{\Sigma}$: The eigen value matrix of $\mathbf{X}^{\mathrm{T}} \mathbf{X}$.
$\sigma_{i}=\sqrt{\lambda_{\mathrm{i}}}$
\mathbf{U} : The eigen vectors of $\mathbf{X} \mathbf{X}^{\mathrm{T}}$.

SVD and Eigen value decomposition
We know that,

$$
\begin{gathered}
\mathbf{u}_{i}^{T} \mathbf{u}_{\mathrm{j}}=\left(\frac{\mathbf{X} \mathbf{v}_{\mathrm{i}}}{\sigma_{\mathrm{i}}}\right)^{\mathrm{T}}\left(\frac{\mathbf{X} \mathbf{v}_{\mathrm{j}}}{\sigma_{\mathrm{j}}}\right) \\
\mathbf{u}_{i}^{T} \mathbf{u}_{\mathrm{j}}=\frac{\mathbf{v}_{i}^{T} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{v}_{\mathrm{j}}}{\sigma_{\mathrm{i}} \sigma_{\mathrm{j}}}=\frac{\mathbf{X}^{\mathrm{T}} \mathbf{X}}{\sigma_{\mathrm{i}} \sigma_{\mathrm{j}}} \mathbf{v}_{i}^{T} \mathbf{v}_{\mathrm{j}}=0
\end{gathered}
$$

\mathbf{U} : The orthonormal eigen vectors of $\mathbf{X} \mathbf{X}^{\mathrm{T}}$.
We can thus write,

$$
\mathbf{X} \mathbf{X}^{\mathrm{T}} \mathbf{U}=\mathbf{U} \boldsymbol{\Sigma}^{\mathbf{2}}
$$

Example SVD

- Consider $\mathbf{X}=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]$
- Compute $\mathbf{X}^{\mathrm{T}} \mathbf{X}=\left[\begin{array}{cc}4 & -3 \\ 4 & 3\end{array}\right]\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}25 & 7 \\ 7 & 25\end{array}\right]$
- Orthogonal Eigen vector of $\mathbf{X}^{\mathbf{T}} \mathbf{X}$

$$
\text { - } \mathbf{v}_{1}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \text { and } \mathbf{v}_{2}=\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]
$$

- Eigen values of $\mathbf{X}^{\mathrm{T}} \mathbf{X}$

$$
\text { - } \sigma_{1}{ }^{2}=32 \text { and } \sigma_{2}^{2}=18
$$

- We have,

$$
\left[\begin{array}{cc}
4 & 4 \\
-3 & 3
\end{array}\right]=[\quad]\left[\begin{array}{cc}
4 \sqrt{2} & 0 \\
0 & 3 \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

Example SVD

- Consider $\mathbf{X}=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]$
- Compute $\mathbf{X} \mathbf{X}^{\mathrm{T}}=\left[\begin{array}{cc}4 & 4 \\ -3 & 3\end{array}\right]\left[\begin{array}{cc}4 & -3 \\ 4 & 3\end{array}\right]=\left[\begin{array}{cc}32 & 0 \\ 0 & 18\end{array}\right]$
- Orthogonal Eigen vector of $\mathbf{X} \mathbf{X}^{\mathrm{T}}$

$$
\text { - } \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \mathbf{u}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

- We have,

$$
\left[\begin{array}{cc}
4 & 4 \\
-3 & 3
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
4 \sqrt{2} & 0 \\
0 & 3 \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

SVD vs Eigen Decomposition

- An eigen-decomposition is valid only for square matrix. Any matrix (even rectangular) has an SVD.
- In eigen-decomposition $\mathbf{X}=\mathbf{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$, the eigen-basis (\mathbf{Q}) is not always orthogonal. The basis of singular vectors is always orthogonal.
- In SVD we have two singular-spaces (right and left).
- Computing the SVD of a matrix is more numerically stable.

SVD and PCA

$\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathbf{T}}$

- The covariance matrix of \mathbf{X} is given by

$$
\operatorname{Cov}=X^{T} X /(n-1)
$$

- The eigen value decomposition of Cov matrix

$$
\mathbf{C o v}=\mathbf{Q} \Lambda \boldsymbol{Q}^{T}
$$

Where,
\mathbf{Q} is a matrix of eigenvectors of $\mathbf{C o v}$ or principal axes of \mathbf{X}
Λ is a diagonal matrix with eigenvalues λ_{i} in the decreasing order on the diagonal.

SVD and PCA

$\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$

- We can rewrite covariance matrix of \mathbf{X} as

$$
\begin{gathered}
\mathbf{C o v}=\mathbf{X}^{\mathrm{T}} \mathbf{X} /(\mathbf{n}-\mathbf{1}) \\
\mathbf{C o v}= \\
\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathrm{T}} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} /(\mathbf{n}-\mathbf{1}) \\
=\mathbf{V} \frac{\boldsymbol{\Sigma}^{2}}{(n-1)} \mathbf{V}^{\mathrm{T}}
\end{gathered}
$$

- Right singular vector \mathbf{V} is the principal axes
- $\lambda_{\mathrm{i}}=\sigma_{\mathrm{i}}^{2} /(\mathrm{n}-1)$
- $\mathbf{X} \mathbf{V}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{U} \boldsymbol{\Sigma}$
- The columns of $\mathbf{U} \boldsymbol{\Sigma}$ are the principal components.

SVD for dimensionality reduction

- Input Data: $\mathbf{X}_{\mathrm{n} \times \mathrm{d}}$
- Goal: Reduce the dimensionality to k where $\mathrm{k}<\mathrm{d}$
- Select k first columns of \mathbf{U}, and $\mathrm{k} \times \mathrm{k}$ upper-left part of $\boldsymbol{\Sigma}$
- Construct $\mathbf{B}=\mathbf{U}_{\mathrm{k}} \boldsymbol{\Sigma}_{\mathrm{k} \times \mathrm{k}}$
- \mathbf{B} is the required $\mathrm{n} \times \mathrm{k}$ matrix containing first k PCs.

Rank-k approximation in the spectral norm
The best approximation to \mathbf{X} by a rank deficient matrix is obtained by the top singular values and vectors of \mathbf{X}.

$$
\mathbf{x}_{\mathrm{k}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{u}_{\mathrm{i}} \sigma_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}^{\mathrm{T}}
$$

Then,

$$
\min _{\mathbf{B} \in \mathbb{R}^{\mathbf{n}} \times \mathrm{d}}^{\operatorname{rank}(\mathbf{B}) \leq \mathrm{k}}| | \mathbf{X}-\mathbf{B}\left\|_{2}=| | \mathbf{X}-\mathbf{X}_{\mathrm{k}}\right\|_{2}=\sigma_{\mathrm{k}+1}
$$

$\sigma_{\mathrm{k}+1}$ is the largest singular value of $\mathbf{X}-\mathbf{X}_{\mathrm{k}}$.
\mathbf{X}_{k} is the best rank k 2-norm approximation of \mathbf{X}.

Applications of SVD

- Determining range, null space and rank (also numerical rank).
- Matrix approximation.
- Inverse and Pseudo-inverse:
- If $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$ and $\boldsymbol{\Sigma}$ is full rank, then $\mathbf{X}^{-1}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathrm{T}}$.
- If $\boldsymbol{\Sigma}$ is singular, then its pseudo-inverse is given by $\mathbf{X}^{\dagger}=\mathbf{V} \boldsymbol{\Sigma}^{\dagger} \mathbf{U}^{\mathrm{T}}$, where $\boldsymbol{\Sigma}^{\dagger}$ is formed by replacing every nonzero entry by its reciprocal.
- Least squares:
- If we need to solve $\mathbf{A x}=\mathrm{b}$ in the least-squares sense, then $\mathbf{x}_{\mathrm{LS}}=$ $\mathbf{V} \boldsymbol{\Sigma}^{\dagger} \mathbf{U}^{\mathrm{T}} \mathrm{b}$
- Denoising - Small singular values typically correspond to noise.

Latent Semantic Analysis using SVD

- Input matrix: term-document matrices
- Rows: represents words.
- Columns: represents documents.
- Value: the count of the words in the document.
- Example:

D1:How to bake bread without recipes
D2:The classic art of Viennese pastry
D3:Numerical recipes: The art of scientific computing D4:Breads, pastries, pies and cakes: quantity baking recipes D5:Pastry: A book of best french recipes

$$
\mathbf{X}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Latent Semantic Indexing (LSI)

$\mathbf{X}_{\mathrm{n} \times \mathrm{d}}=\mathbf{U}_{\mathrm{n} \times \mathrm{k}} \boldsymbol{\Sigma}_{\mathrm{k} \times \mathrm{k}} \mathbf{V}_{\mathrm{k} \times \mathrm{d}}^{\mathrm{T}}$

- Consider \mathbf{X}, the term-document matrix.
- Then,
- \mathbf{U} is the SVD term matrix
- \mathbf{V} is the SVD document matrix
- SVD provides a low rank approximation for \mathbf{X}.
- Constrained optimization problem
- Goal: Represent \mathbf{X} as \mathbf{X}_{k} with low Frobenius norm for the error $\mathbf{X}-\mathbf{X}_{\mathrm{k}}$

Latent Semantic Indexing (LSI)

$\mathbf{X}_{\mathrm{n} \times \mathrm{d}}=\mathbf{U}_{\mathrm{n} \times \mathrm{k}} \boldsymbol{\Sigma}_{\mathrm{k} \times \mathrm{k}} \mathbf{V}_{\mathrm{k} \times \mathrm{d}}^{\mathrm{T}}$

$$
\mathbf{V}^{\mathrm{T}}=\left(\begin{array}{ccccccc}
& d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\
\operatorname{dim} 1 & -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\
\operatorname{dim} 2 & -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\
\operatorname{dim} 3 & 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\
\operatorname{dim} 4 & 0 & 0 & 0.58 & 0 & -0.58 & 0.58 \\
\operatorname{dim} 5 & -0.53 & 0.29 & -0.63 & 0.19 & 0.41 & -0.22
\end{array}\right)
$$

Latent Semantic Indexing (LSI)

$\mathbf{X}_{\mathrm{n} \times \mathrm{d}}=\mathbf{U}_{\mathrm{n} \times \mathrm{k}} \boldsymbol{\Sigma}_{\mathrm{k} \times \mathrm{k}} \mathrm{V}_{\mathrm{k} \times \mathrm{d}}^{\mathrm{T}}$

$\mathrm{k}=2$

$$
\mathbf{U}=\left(\begin{array}{cccccc}
& \operatorname{dim} 1 & \operatorname{dim} 2 & \operatorname{dim} 3 & \operatorname{dim} 4 & \operatorname{dim} 5 \\
\text { cos monaut } & -0.44 & -0.30 & 0 & 0 & 0 \\
\text { astronaut } & -0.13 & -0.33 & 0 & 0 & 0 \\
\text { moon } & -0.48 & -0.51 & 0 & 0 & 0 \\
\text { car } & -0.70 & 0.35 & 0 & 0 & 0 \\
\text { truck } & -0.26 & 0.65 & 0 & 0 & 0
\end{array}\right) \text { We can get rid of zero }
$$

$$
\begin{aligned}
& \mathbf{X}=\left(\begin{array}{ccccccc}
& d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\
\text { cosmonaut } & 1 & 0 & 1 & 0 & 0 & 0 \\
\text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\
\text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { car } & 1 & 0 & 0 & 1 & 1 & 0 \\
\text { truck } & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \\
& \boldsymbol{\Sigma}=\left(\begin{array}{ccccc}
2.16 & 0 & 0 & 0 & 0 \\
0 & 1.59 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \text { We can get rid of zero } \\
& \text { valued columns and rows } \\
& \text { And have a } 2 \times 2 \text { concept } \\
& \text { strength matrix } \\
& \mathbf{V}^{\mathbf{T}}=\left(\begin{array}{ccccccc}
& d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\
\operatorname{dim} 1 & -0.75 & -0.28 & -0.20 & -0.44 & -0.33 & -0.12 \\
\operatorname{dim} 2 & -0.29 & -0.53 & -0.19 & 0.65 & 0.22 & 0.41 \\
\operatorname{dim} 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
\operatorname{dim} 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
\operatorname{dim} 5 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \text { We can get rid of zero } \\
& \text { valued columns } \\
& \text { And have a } 2 \times 6 \\
& \text { concept-to-doc } \\
& \text { similarity matrix }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{U}=\left(\begin{array}{cccccc}
& \operatorname{dim} 1 & \operatorname{dim} 2 & \operatorname{dim} 3 & \operatorname{dim} 4 & \operatorname{dim} 5 \\
\cos \text { monaut } & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\
\text { astronaut } & -0.13 & -0.33 & -0.59 & 0.00 & 0.73 \\
\text { moon } & -0.48 & -0.51 & -0.37 & 0.00 & -0.61 \\
\text { car } & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\
\text { truck } & -0.26 & 0.65 & -0.41 & 0.58 & -0.09
\end{array}\right) \\
& \mathbf{X}=\left(\begin{array}{ccccccc}
& d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\
\text { cosmonaut } & 1 & 0 & 1 & 0 & 0 & 0 \\
\text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\
\text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { car } & 1 & 0 & 0 & 1 & 1 & 0 \\
\text { truck } & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \quad \sum=\left(\begin{array}{cccccc}
2.16 & 0 & 0 & 0 & 0 \\
0 & 1.59 & 0 & 0 & 0 \\
0 & 0 & 1.28 & 0 & 0 \\
0 & 0 & 0 & 1.00 & 0 \\
0 & 0 & 0 & 0 & 0.39
\end{array}\right)
\end{aligned}
$$

Latent Semantic Indexing (LSI)

> Original space
> $Q=\left(\begin{array}{cc}\text { cos monaut } & \mathbf{1} \\ \text { astronaut } & \mathbf{0} \\ \text { moon } & \mathbf{0} \\ \text { car } & \mathbf{0} \\ \text { truck } & \mathbf{0}\end{array}\right)$
$\mathbf{X}=\left(\begin{array}{ccccccc} & d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\ \cos m o n a u t & 1 & 0 & 1 & 0 & 0 & 0 \\ \text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\ \text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\ \text { car } & 1 & 0 & 0 & 1 & 1 & 0 \\ \text { truck } & 0 & 0 & 0 & 1 & 0 & 1\end{array}\right)$
$\cos (Q, d 2)=0$

$\cos \left(Q^{r}, d 2\right)=0.88$

We see that query is not related to document 2 in the original space but in the latent semantic space they become highly related.

Latent Semantic Indexing (LSI)

- SVD allow words and documents to be mapped into the same "latent semantic space".
- LSI projects queries and documents into a space with latent semantic dimensions.
- Co-occurring words are projected on the same dimensions
- Non-co-occurring words are projected onto different dimensions
- LSI captures similarities between words
- For example, we want to project "car" and "automobile" onto the same dimension.
- Dimensions of the reduced semantic space correspond to the axes of greatest variation in the original space.

Kleinberg's Algorithm
Hyperlink-Induced Topic Search (HITS)
aka 'hubs and authorities'

- Extracting information from link structures of a hyperlinked environment, rank pages relevant to a topic
- Essentials:
- Authorities
- Hubs
- Goal: Identify good authorities and hubs for a topic.
- Each page receive two scores,
- Authority score $A(p)$: It estimates value of content on page
- Hub score $H(p)$: It estimates value of links on page

Authorities and Hubs

- For a topic, authorities are relevant nodes which are referred by many hubs. (high in degree)
- For a topic, hubs are nodes which connect many related authorities for that topic. (high out

good Authorities degree)

HITS (cont.)

- Three Steps

1. Create a focused base-set of the Web.

- Start with a root set.
- Add any page pointed by a page in the root set to it.

- Add any page that points to a page in the root set to it (at most d).
- The extended root set becomes our base set.

2. Iteratively compute hub and authority scores.

- $A(p)$: sum of $H(q)$ for all q pointing to p.
- $H(q)$: sum of $A(p)$ for all p pointing to q.
- Starts with all scores as 1, and Iteratively repeat till convergence.

3. Filter out the top hubs and authorities

Matrix Notation

- G (root set) is a directed graph with web pages as nodes and their links.
- G can be presented as a connectivity matrix A
- $A(i, j)=1$ only if i-th page points to j-th page.
- Authority weights can be represented as a unit vector a
- a_{i} The authority weight of the i-th page
- Hub weights can be represented as a unit vector h
- h_{i} : The hub weight of the i-th page

$$
A=\left(\begin{array}{cccccc}
& n 1 & n 2 & n 3 & n 4 & n 5 \\
n 1 & 0 & 1 & 1 & 1 & 0 \\
n 2 & 0 & 0 & 0 & 1 & 0 \\
n 3 & 0 & 0 & 0 & 0 & 1 \\
n 4 & 0 & 0 & 0 & 0 & 0 \\
n 5 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Algorithm

- Updating authority weights:

$$
\mathrm{a}=\mathrm{A}^{\mathrm{T}} \mathrm{~h}
$$

- Updating hub weights:

$$
\mathrm{h}=\mathrm{Aa}
$$

- After k iterations:

$$
\begin{gathered}
\mathrm{a}_{1}=\mathrm{A}^{\mathrm{T}} \mathrm{~h}_{0} \\
\mathrm{~h}_{1}=A \mathrm{Aa}_{1} \\
\rightarrow \mathrm{~h}_{1}=\mathrm{AA}^{\mathrm{T}} \mathrm{~h}_{0} \\
\rightarrow \mathrm{~h}_{\mathrm{k}}=\left(\mathrm{AA}^{\mathrm{T}}\right)_{\mathrm{k}} \mathrm{~h}_{0}
\end{gathered}
$$

- Convergence
- a_{k} : Converges to principal eigen vector of $A^{T} A$
- h_{k} : Converges to principal eigen vector of $A A^{T}$

Nonnegative Matrix Factorization (NMF)

Given $\mathrm{A} \in \mathbb{R}_{+}^{\mathrm{n} \times \mathrm{d}}$ and a desired rank $\mathrm{k} \ll \min (\mathrm{n}, \mathrm{d})$,
Find $W \in \mathbb{R}_{+}^{n \times k}$ and $H \in \mathbb{R}_{+}^{k \times n}$ s.t. $A \approx W H$.

- $\min _{\mathrm{W} \geq 0, \mathrm{H} \geq 0}\|\mathrm{~A}-\mathrm{WH}\|_{\mathrm{F}}$
- Nonconvex.
- W and H not unique (e.g. $\widehat{W}=W D \geq 0, \widehat{H}=D^{-1} H \geq 0$) Notation: \mathbb{R}_{+}nonnegative real numbers

Nonnegative Matrix Factorization (NMF)

- SVD gives: $A=U \Sigma V^{T}$
- Then, $\left|\left|A-U \Sigma V^{T}\right|\right|_{F} \leq \min | | A-W H| |_{F}$
- Then WHY NMF???
- NMF works better in terms of its non-negativity constraints. Example in
- Text mining. (A is represented as counts, so is strictly positive.)

References

- https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/singular-value-decomposition/MIT18 06SCF11 Ses3.5sum.pdf
- https://archive.siam.org/meetings/sdm11/park.pdf

