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Approximation as an optimization

Idea:

Assume we have the distribution P(x) that can be represented
compactly, but inference is not efficient

Assume we have a class of distributions Q(x) that are easier to
work with in inferences

Objective: We want to find Q(x) which is the best
approximation of P(x) and use Q(x) to make inferences

How to define what is the best Q(x) ?

The distance in between two distributions is measured by a
relative entropy (Kullback-Leibler divergence)

D(Q|P)= EQ(log %}
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KL divergence

KL divergence:

vorn - )
O(x) _
ZQ(X) 0g —— Px)

Z O(x)log O(x) =, O(x)log P(x)

Asymmetric measure:

D(P|Q)# D(Q|P)
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Helmholz Free energy
Assume: P(x)=— H é,(x,)
0(x) o
D(Q|P)= Z O(x)log Q(x) —Zx‘, O(x)log P(x)

D(Q|P)=) O(x)log O(x)-D, Q(X)log( [1¢.(x. )J

cecliques

D@ P)= 10gZ)ZQ(X) ZQ(X)[ Zlogcb(x )j+ZQ(X)10gQ(X)

ceclique.

D(Q|P)= +10g(Z)—ZQ(X)( . log 4. (x, )J +Z O(x)logQ(x)

cecliques
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Helmholz free energy

Assume: P(x) =% [14.(x.) and 0(x)

D(Q|P)=+log(2)~ ), Q(x)( 2. log ¢c(xx)j +2,0(x)logQ(x)

cecliques

log Z=D(Q|P)+ ), Q(x)( D, log ¢, (xc)j =Y. 0(x)logQ(x)

cecliques

log Z=D(Q|P)+ >, 2 0(x)logd.(x.)-2, 0(x)logO(x)

cecliques  x, X

Helmholz free energy - F(P,Q)

CS 3710 Probabilistic graphical models

Helmbholz free energy

Assume: P(x)=% [[4.(x.) and Q(x)

cecliques

D(QIP)=+10g(Z)—ZQ(X)[ Zlogcfﬁc(xx)J+ O(x)logQ(x)

cecliques

log Z=D(Q|P)+ ), Q(x)( D, log ¢, (xc)) —>. 0(x)logQ(x)

cecliques

log Z=D(Q|P)r >, > O(x)logg,.(x,)~), O(x)logQ(x)

cecliques  x, X

Helmholz free energy

F(P,Q)=~ 3, > 0(x.)logd.(x,)+D O(x)logQ(x)

cecliques  x,

F(P,Q)=E(P,Q)~H,(Q)

energy entropy
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Helmholz free energy

Assume: P(x) =% [[4.(x.) and 0(x)

cecliques

log Z=D(Q|P)+ >, > 0(x)logd.(x.)-2, O(x)logO(x)

cecliques x, X

log Z = D(Q | P)~ E(P,0)+H ,(0)
logZ = D(Q|P)-F(P,0)
S -0

Constant wrt Q = KL divergence + Helmholz free energy

Increase the distance = increase the HF energy
Decrease the distance - decrease the HF energy
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Helmbholz free energy

Assume: P(x)=% [[#.(x.) and O(x)

logZ = D(Q|P)-F(P,Q)
\ ) NN

Constant wrt Q = KL divergence - Helmholz free energy

Increase the distance - increase the HF energy
Decrease the distance - decrease the HF energy

The problem of finding the best Q(x) approximating P(x) can
be cast as the problem of minimizing the HF energy F(Q,P)

* Note that -F(P,Q) is a lower bound of log Z
logZ > -F(P,0Q)

CS 3710 Probabilistic graphical models




Optimization of free energy

Approximations:
* we want to find Q(x) optimizing F(P,Q)

F(P,Q)=-), Q(X)( > log . (x, )j +Z O(x)logQ(x)

cecliques

F(P,0)= /Z Y. 0(x,)log ¢, (x, )+Z Q(x)logQ(x)
cecliques ",
* Solution: variational approximations
— Tractable approximations of the Helmholz free energy
* Two solution methods:
1. Approximate F(P,0) with F(P,0)
2. Choose a simpler form of Q that is easy to work with
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Kikuchi approximation

Goal: Approximate F(P,Q) with F(P,0)
F(P,Q)= z ZQ(X )log ¢, (x, )+Z O(x)logQ(x)

F(PaQ):E(PaQ)_HQ(Q)
H,(Q) =—Z O(x)logQ(x)

* Kikuchi approximation:

Fy(P,Q)=E(P,Q)—H , (Q)
Hy(Q)== 2 D 0(x)log0(x)~ >, > u0(x;)logQ(x,)

cecliques  x, Seoverlaps  x;

Sum over cliques + corrections for overlaps
where O(x,)and O(x;) are properly normalized

and ;, - Moebius (overcounting) number = 1= > u. V¢
=
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Kikuchi approximation

* Kikuchi approximation:

Fy(P,Q)=E(P,Q)—H ;, (Q)
H,(0)== 2 2 0(x)log0(x)~ > > u.0(x,)log0(x;)

cecliqgues  x,. Seoverlaps  x:

Sum over cliques + corrections for overlaps

where Q(x,)and Q(x,) are properly normalized
and u, - Moebius (overcounting) number = 1- > u,, V¢
=4
* Normalization conditions:
— For all subsets y’ — vy it holds:
Z Q;/ (x;/) = Qy'(‘xy')

— For all clusters vy it holds: =z
2.0,(x,)=1
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Kikuchi approximation

* Kikuchi approximation:
F,(P,0)=E(P,Q)-H,,(Q)
H,(0)== 2 2 0(x)log0(x,)~ > >, u.0(x;)logO(x,)

cecliques  x, Seoverlaps  xg

Sum over cliques + corrections for overlaps

where (O(x,)and Q(x.) are properly normalized

and u, - Moebius number
*  Moebius (overcounting) number:

u,=1 if goe — 2 2 10(x)log0(x,)

cecliques  x,

u§=1—2u§, vé o - Z Zqu(xg)logQ(xg)

Ecé Seoverlaps  x;
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Bethe approximation

Goal: Approximate F(P,Q) with F(P,Q)
* Kikuchi approximation:

Fy(P,Q)=E(P,Q)~ H ;(Q)
Hu,(Q)== 2, D, 0(x)log0(x)~ > > u.0(x,)logO(x;)

cecliques  x, Seoverlaps  x;
Sum over cliques + corrections for overlaps
u; - Moebius number = 1- > u, V&
fcg
* Bethe approximation (overlaps restricted to disjunct
subsets, typically singletons)

Fyene (P,Q) = E(P,Q) = H g,y (Q)
Hpp(Q)== 2, D, 0(x)log0(x,)+> >, O(x.)logO(x,)

cecliques  x, ¢

Sum over cliques + corrections over disjunct subsets
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Optimization of free energy

Approximations:
* we want to find Q(x) optimizing F(P,Q)

F(P,Q)=—ZQ(X)( Zlog¢c(xc)j+ O(x)logQ(x)

F(P,Q) =~ Z ‘ZQ(xc)log 4.(x.)+), O(x)logQ(x)

Solution 2:
Choose a simpler form of Q that is easy to work with
« Example: a mean field approximation

Q(x) = H Qi(xi)
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Mean Field approximation

F(P,0)=~ > > 0(x)log¢, (x.)+) O(x)logQ(x)

O(x) = H 0,(x;)
BP9 T 0 g ) zz[ 1 Q(x,.>}og 5.5
H(Q)= —ZX: O(x)logQ(x) = —Zx: (1,:! Q(xi)jlog[l:[x Q(%)J
--¥ (H Q(x,o}; log O(x)
=YY 0(x)log O(x,)
- Z H, (x)
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Mean Field approximation

F(P,Q)== D, > 0(x.)logd.(x,)+D O(x)logQ(x)

cecliques  x,

BP0 -~ Y z(HQ<xi>jlog¢c<xc>

cecliques x, \ x;€x,

H(Q)= —Z > 0(x,)log O(x,)
Task: find O(x) = H 0:(x;) maximizing F(P,Q)
such that Y O(x)=1

Solving: build a Lagrangian, differentiate and set to 0 !
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Optimization of free energ

Example of an exact inference:
* Assume a cluster tree

P(C)P(DIC)  P(GIL,D) P(DP(SII)

P(LIG) P(JIS,L)

P(HIG,J)

F(P,Q)== 2, > 0(x)logd.(x.)+), O(x)logQ(x)

cecliques x, X
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Optimization of free energy

Example of an exact inference:
e Assume a cluster tree

P(I)P(SII)

P(C)P(D|C)  P(GII,D) ﬂo(Gy,S,I)

M v

7,(C, D) 7, (G,1,D) P(L|G) P(J|S,L)

EO(Ga"‘I’SaL)
P(HIG,3)
\ 4

ﬁo(HﬂGaJ)
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Belief propagation: messages and potentials

5GID—>CD (D )
5CD—>G]D(D )

keNq_

My = 5]’—>ié;'—> j
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Belief propagation

* Assume a cluster tree and potentials at the end of the
belief propagation

7(G,S,I)
7(C, D) u(G,S)
u(D) n(G,J,S,L)

u(G,J)
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Optimization of free energy

* Assume a cluster tree and potentials at the end of the
belief propagation

7(G,S, 1)

u(G,S)

7(C,D) 7(G,1,D)

1(D) u(G, 1) 7(G,J,S,L)

Distribution: w(G,J)
[17 7(H,G,J)

Q(x) — cecliques
Iz

Ci--C;
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Optimization of free energy

* Assume a cluster tree and potentials at the end of the
belief propagation

7(G,S,1)

#(G,S)

7(C,D) 7(G,1,D)

u(D) u(G, 1) 7(G,J,S,L)

w(G,J)
Calibrated distribution:

,uij(sij): Z,[i(ci) (H,G,J)
C;-S;

for all clusters containing: S,
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Optimization of free energy

Example of an exact inference:
* Assume a Kikuchi approximation

F(P,0)=- Y > 0(x,)logg.(x.)+

cecliques x,

+ Y 0x)ogx )+ Y > u0(x,)logd(x,)

cecliques X, Seoverlaps x;

FP.O=- Y > z(x)logr(x)+

cecliques x,

+ 30 mx)logr.(x)— D > u(x)logu(x,)

cecliques x, seoverlaps X

F(P,0)=F(P,0)
Why ? Substitute Q(x) to the F(P,Q) !!
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Optimization of free energy

Example of an exact inference:
* Assume a Kikuchi approximation
F(P.O)== 3 300x)logd,(x)+
cecliques x,
+EE§MS; Q(xc)logQ(xc)+é Note: Overlaps on disjoint
_ ' subsets are equal to
F(P,O)=— D, > m(x)logz.(x)+  the Bethe approximation

cecliques x,

+ > mx)logr,(x)— D > u(x)logu(x,)

cecliques x, seoverlaps x;

F(P,0)=F(P.Q)
Why ? Substitute Q(x) to the F(P,Q) !!

CS 3710 Probabilistic graphical models




Optimization of free energy

Example of an exact inference:

FP.O ==Y > z(x)logr(x,)+

cecliques x,

+ 30 mx)logr.(x)— D > u(x)logu(x,)

cecliques x,, seoverlaps x
F(P,0)=F(P,0) M~
Why ? Substitute Q(x) to the F(P,Q) !!  Q(x) = iy

H Hj;

c——C,

F(P,Q)=~ 2, > 0(x.)logd.(x.)+) O(x)logQ(x)

cecliques x, x

F(P,Q)=~ >, > 7.(x)logd.(x)+

cecliques  x,

+ Y > m(x)logr (x)— D D (x,)logu,(x,)

cecliques  x, s€8;=8; x.
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Optimization of free energy
Optimization:

Find Q
Minimizing ~ F(P,0)

Subjectto 4, = Z 7 for all s Assures

Z 7[:&1) for all ¢ calibration
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