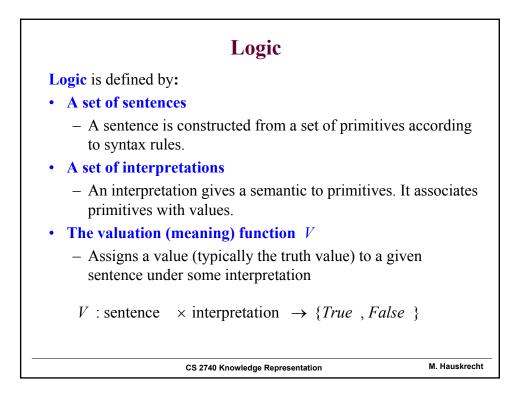
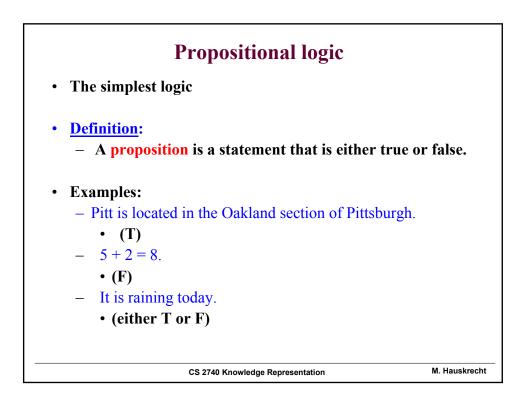
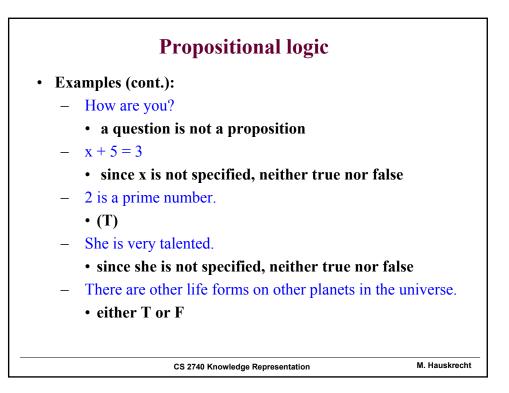
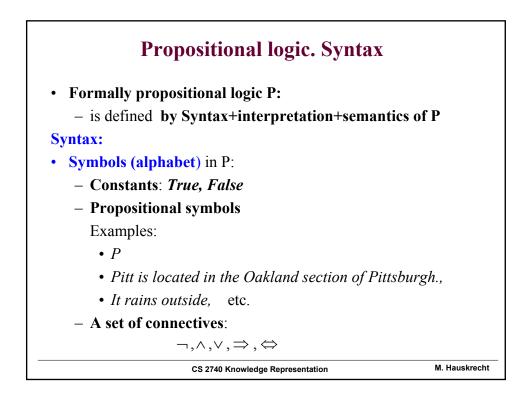
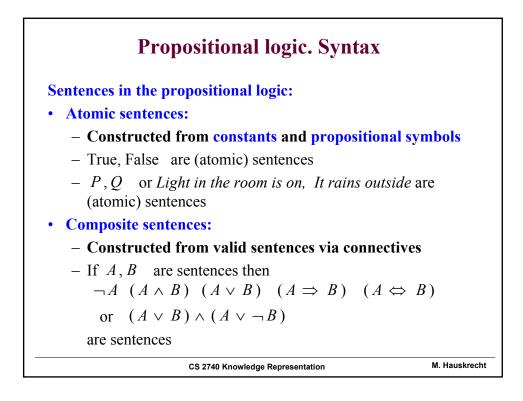

CS 2740 Knowledge Representation Lecture 4 Propositional logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

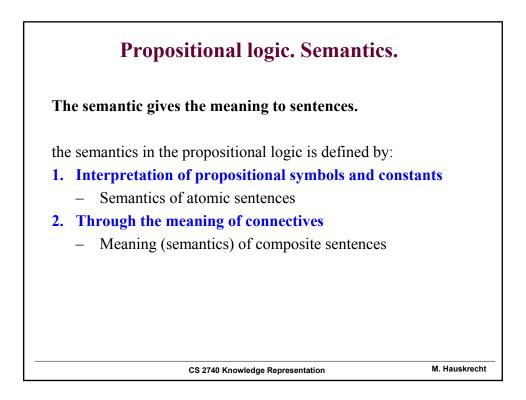

CS 2740 Knowledge Representation

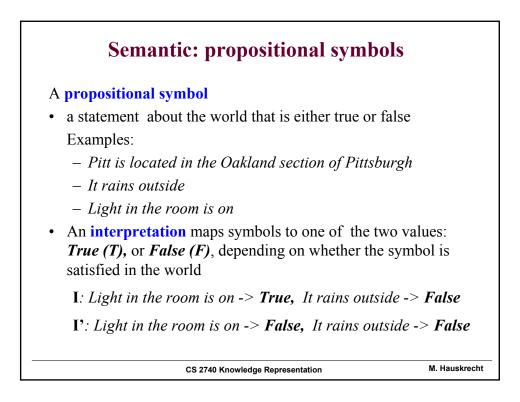


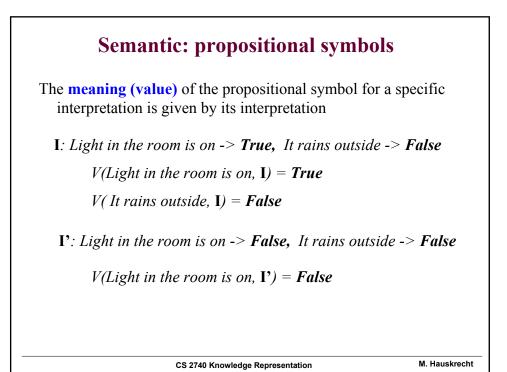


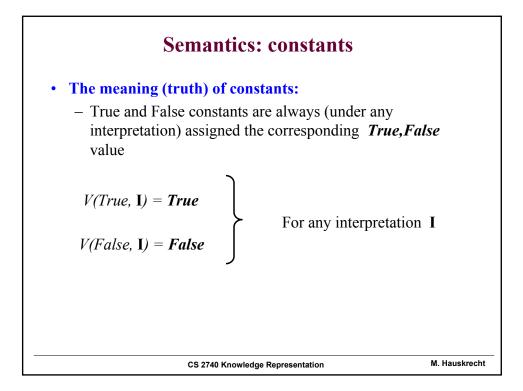

CS 2740 Knowledge	Representation
-------------------	----------------





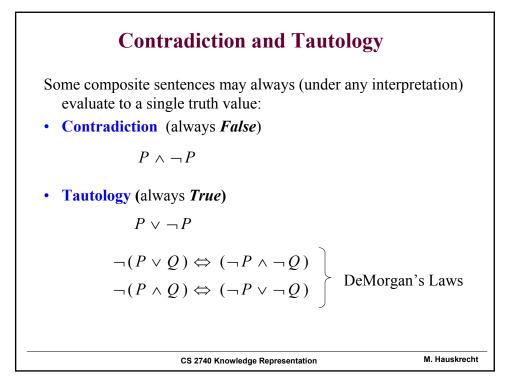




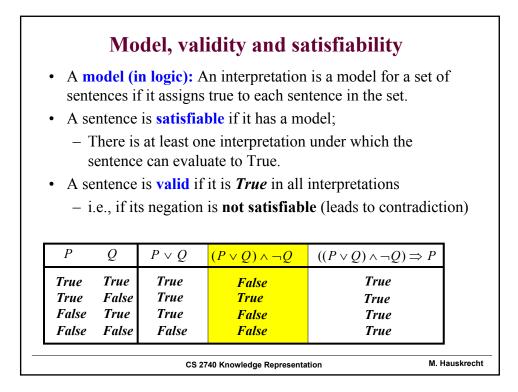


Translation

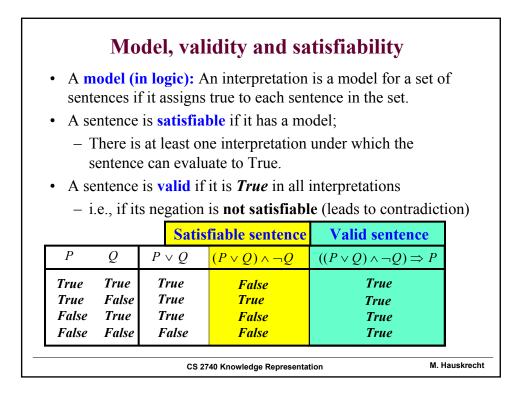
Assume the following sentences:

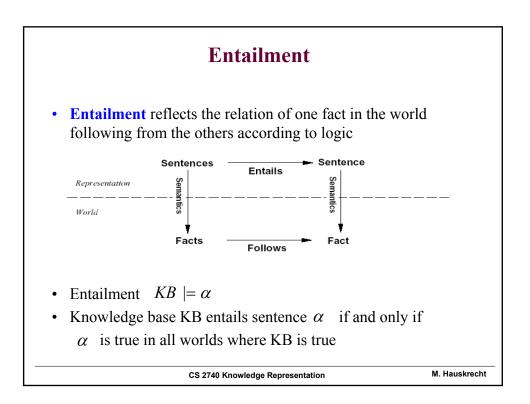

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

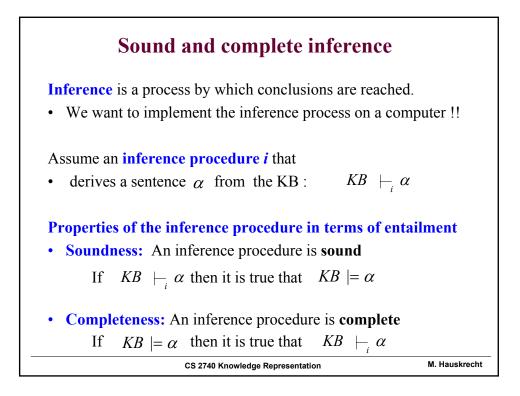
Denote:

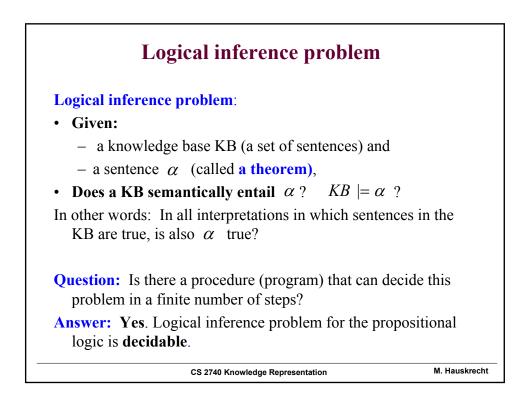

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2740 Knowledge Representation


A	ssume the following sentences:	
•	It is not sunny this afternoon and it is colder than yesterday.	$\neg p \wedge q$
•	We will go swimming only if it is sunny.	$r \rightarrow p$
•	If we do not go swimming then we will take a canoe trip.	$\neg r \rightarrow s$
•	If we take a canoe trip, then we will be home by sunset.	$s \rightarrow t$
D	enote:	
•	p = It is sunny this afternoon	
•	q = it is colder than yesterday	
•	r = We will go swimming	
•	s= we will take a canoe trip	
•	t= We will be home by sunset	




sent	ences if	it assign	An interpretatio s true to each sen able if it has a m		et of
- 1	There is	at least c		under which the	
			C · · · 7 · 11		
				interpretations	
				Interpretations le (leads to contradic	tion)
			n is not satisfiab	1	, 7
— i	.e., if its	s negation	n is not satisfiab $(P \lor Q) \land \neg Q$ False	le (leads to contradic	, 7
- i	.e., if its <i>Q</i>	s negation $P \lor Q$	n is not satisfiab $(P \lor Q) \land \neg Q$	le (leads to contradic $((P \lor Q) \land \neg Q) \Rightarrow P$, 7



Mod	l <mark>el, val</mark> i	idity and sa	tisfiability	
		n interpretation true to each sen	is a model for a set of tence in the set.	of
• A sentence is	s <mark>satisfial</mark>	<mark>ble</mark> if it has a mo	odel;	
		e interpretation ate to True.	under which the	
• A sentence is	s valid if	it is <i>True</i> in all	interpretations	
– i.e., if its	negation	is not satisfiabl	e (leads to contradict	ion)
	Satist	fiable sentence		
P Q	$P \lor Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Longrightarrow P$	
True True True False False True False False	True True True False	False True False False	True True True True	
	CS 27	40 Knowledge Representa	tion M. H	lauskrecht

Solving logical inference problem

In the following:

How to design the procedure that answers:

 $KB \models \alpha$?

Three approaches:

• Truth-table approach

• Inference rules

• Conversion to the inverse SAT problem

- Resolution-refutation

CS 2740 Knowledge Representation

	Truth-	-table appr	oach	
Problem:	$KB \models \alpha$?			
	1	1	tions for which the H for each of them	KB is
Truth table:				
• .		of sentences for	-	
interpretat symbols) Example:	ions (assignme	ents of True/Fal	se values to proposi	tional
symbols)		ents of True/Fal	-	tional
symbols) Example:	ions (assignme	ents of True/Fal	se values to proposit α	tional

Truth-table approach

Problem: $KB \models \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

E	xample:	KB	α
	P Q	$P \lor Q$ $P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
	True True True Fals False True False Fals	e True False True False	True False False False
		CS 2740 Knowledge Representa	tion M. Hauskrech

	Truth-tab	le approa	ch	
Problem:	$KB \models \alpha ?$			
	heck all possible i of KB) whether	-		KB is
Truth table:enumerates t	ruth values of sen	tences for all i	possible	
interpretation symbols)	as (assignments of		L	
-			L	1
symbols)	s (assignments of	True/False to	propositional	-
symbols) Example:	this (assignments of KB $P \lor Q$ $P ⇐$ True T True F True F True F True F	True/False to	propositional α	- -

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever *KB* evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	С	$A \lor C$	$(B \lor \neg C)$	KB	α
True	True	True				
True	True	False				
True	False	True				
True	False	False				
False	True	True				
False	True	False				
False	False	True				
False	False	False				
		CS 2	740 Knowledge F	Representation		M. Hausk

		Trutl	h-table	approacl	1	
two st	eps pro	ocedure	:			
Gene	rate tab	ole for al	l possible	interpretation	ns	
	never <i>K</i>	B evalu	ates to tru	α evaluate ue $\vee \neg C) \alpha$		
1		((-		(•)
A	B	С (11	$A \lor C$	$(B \lor \neg C)$	KB	α
A True True	B True True	C True False	A ∨ C True True	(B∨¬C) True True	KB True True	α True True
A True True True True	B True True False False	C True False True False	A ∨ C True True True True True	(B∨¬C) True True False True	KB True True False True	α True True True True True
A True True True True False False	B True True False False True	C True False True	A ∨ C True True True	(B ∨ ¬C) True True False	KB True True False	α True True True

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever *KB* evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

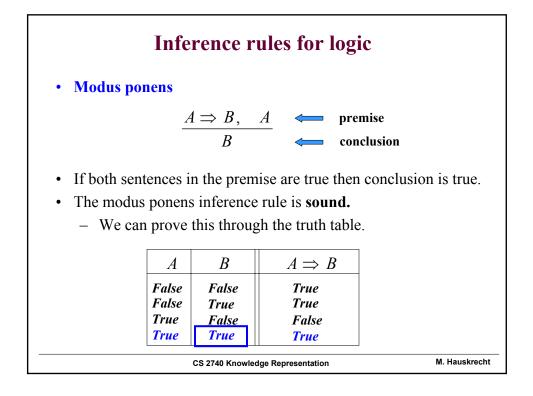
В	С	$A \lor C$	$(B \lor \neg C)$	KB	α
True	True	True	True	True	True
True	False	True	True	True	True
False	True	True	False	False	True
False	False	True	True	True	True
True	True	True	True	True	True
True	False	False	True	False	True
False	True	True	False	False	False
False	False	False	True	False	False
	True False False True True False	True False False True False False True True True False False True	TrueTrueTrueTrueFalseTrueFalseTrueTrueFalseFalseTrueTrueTrueTrueTrueFalseFalseFalseTrueTrueFalseTrueTrueFalseTrueTrue	TrueTrueTrueTrueTrueFalseTrueTrueFalseTrueTrueFalseFalseFalseTrueTrueTrueTrueTrueTrueTrueFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseTrueFalseTrueTrueFalse	TrueTrueTrueTrueTrueFalseTrueTrueTrueFalseTrueTrueFalseFalseFalseFalseTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueTrueFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseTrueTrueFalseFalseFalseTrueFalseFalseFalseFalseTrueFalseFalseFalse

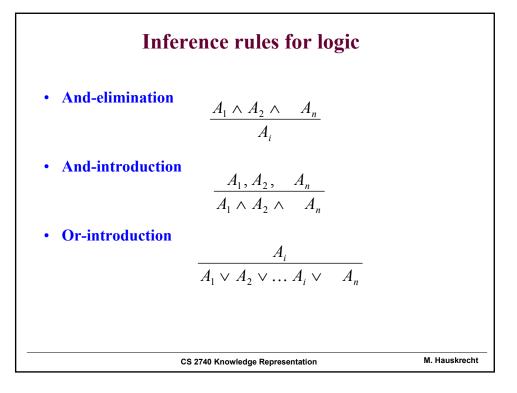
A	B	С	$A \lor C$	$(B \lor \neg C)$	KB	α
True	True	True	True	True	True	True
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False
	Г		ntails α	7		

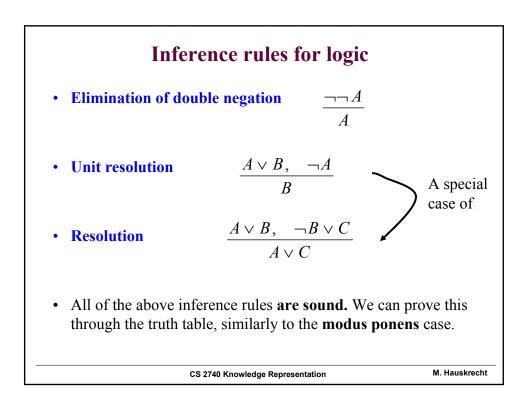
Limitations of the truth table approach.

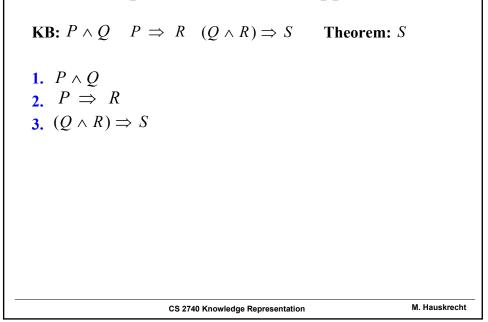
 $KB \models \alpha$?

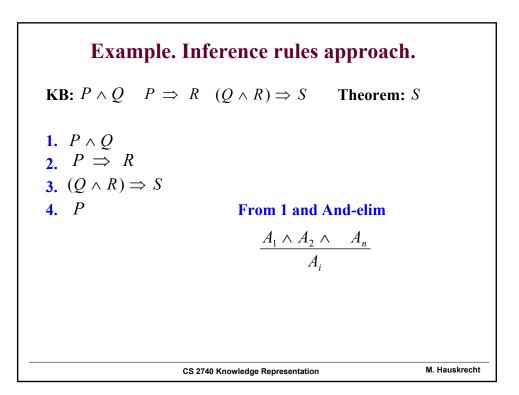
What is the computational complexity of the truth table approach?

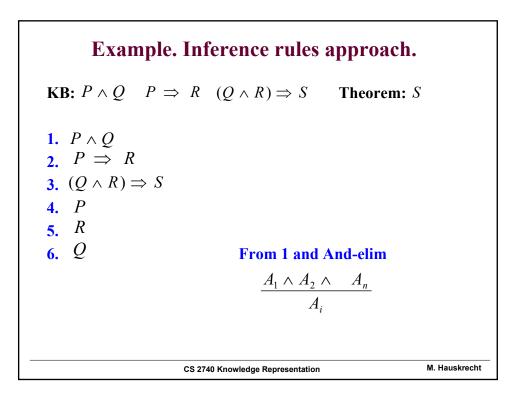

Exponential in the number of the proposition symbols

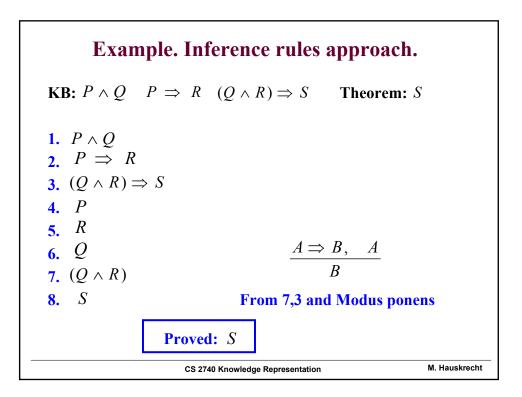

 2^n Rows in the table must be filled

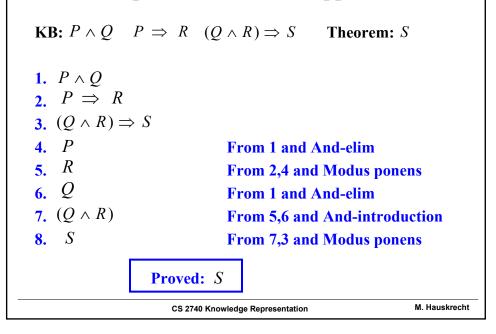

Observation: typically only a small subset of rows is true **Question:** Is it possible to make the process more efficient? **Solution:** Inference rules


- checks only entries for which KB is *True*.
- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones


CS 2740 Knowledge Representation







KB: $P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S$ Theorem: S 1. $P \land Q$ 2. $P \Rightarrow R$ 3. $(Q \land R) \Rightarrow S$ 4. P5. R From 2,4 and Modus ponens $\underline{A \Rightarrow B, A}_{B}$ B

KB: $P \land Q \quad P \Rightarrow R \quad (Q \land R) \Rightarrow S$ Theorem: S 1. $P \land Q$ 2. $P \Rightarrow R$ 3. $(Q \land R) \Rightarrow S$ 4. P5. R6. Q7. $(Q \land R)$ From 5,6 and And-introduction $\frac{A_1, A_2, A_n}{A_1 \land A_2 \land A_n}$ KHauskeed

