Decision making in the presence of uncertainty II

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Information-gathering actions

- Many actions and their outcomes irreversibly change the world
- Information-gathering (exploratory) actions:
- make an inquiry about the world
- Key benefit: reduction in the uncertainty
- Example: medicine
- Assume a patient is admitted to the hospital with some set of initial complaints
- We are uncertain about the underlying problem and consider a surgery, or a medication to treat them
- But there are often lab tests or observations that can help us to determine more closely the disease the patient suffers from
- Goal of lab tests: Reduce the uncertainty of outcomes of treatments so that better treatment option can be chosen

Decision-making with exploratory actions

In decision trees:

- Exploratory actions can be represented and reasoned about the same way as other actions.

How do we capture the effect of exploratory actions in the decision tree model?

- Information obtained through exploratory actions may affect the probabilities of later outcomes
- Recall that the probabilities on later outcomes can be conditioned on past observed outcomes and past actions
- Sequence of past actions and outcomes is "remembered" within the decision tree branch

Oil wildcatter problem.

An oil wildcatter has to make a decision of whether to drill or not to drill on a specific site

- Chance of hitting an oil deposit:
- Oil: 40\%
$P($ Oil $=T)=0.4$
- No-oil: 60\%
$P($ Oil $=F)=0.6$
- Cost of drilling: 70K
- Payoffs:
- Oil: 220K
- No-oil: 0 K

0

Oil wildcatter problem.

An oil wildcatter has to make a decision of whether to drill or not to drill on a specific site

- Chance of hitting an oil deposit:
- Oil: 40%
$P($ Oil $=T)=0.4$
- No-oil: 60\%
$P($ Oil $=F)=0.6$
- Cost of drilling: 70K
- Payoffs:
- Oil: 220K
- No-oil: 0 K

Oil wildcatter problem

- Assume that in addition to the drill/no-drill choices we have an option to run the seismic resonance test
- Seismic resonance test results:
- Closed pattern (more likely when the hole holds the oil)
- Diffuse pattern (more likely when empty)
\mathbf{P} (Oil \mid Seismic resonance test $)$
Seismic resonance test pattern

	closed	diffuse
True	0.8	0.2
False	0.3	0.7

- Test cost: 10 K

Decision tree probabilities
$P($ Oil $=T \mid$ Test $=$ closed $)=\frac{P(\text { Test }=\text { closed } \mid \text { Oil }=T) P(\text { Oil }=T)}{P(\text { Test }=\text { closed })}$
$P($ Test $=$ closed $)=P($ Test $=$ closed \mid Oil $=F) P($ Oil $=F)+P($ Test $=$ closed \mid Oil $=T) P($ Oil $=T)$
Cs 2750 Machine Learning

Oil wildcatter problem.

Value of information

- When the test makes sense?
- Only when its result makes the decision maker to change his mind, that is he decides not to drill.
- Value of information:
- Measure of the goodness of the information from the test
- Difference between the expected value with and without the test information
- Oil wildcatter example:
- Expected value without the test $=18$
- Expected value with the test $=25.4$
- Value of information for the seismic test $=7.4$

Utilities

Selection based on expected values

- Until now: The optimal action choice was the option that maximized the expected monetary value.
- But is the expected monetary value always the quantity we want to optimize?

Selection based on expected values

- Is the expected monetary value always the quantity we want to optimize?
- Answer: Yes, but only if we are risk-neutral.
- But what if we do not like the risk (we are risk-averse)?
- In that case we may want to get the premium for undertaking the risk (of loosing the money)
- Example:
- we may prefer to get $\$ 101$ for sure against $\$ 102$ in expectation but with the risk of loosing the money
- Problem: How to model decisions and account for the risk?
- Solution: use utility function, and utility theory

Utility function

- Utility function (denoted U)
- Quantifies how we "value" outcomes, i.e., it reflects our preferences
- Can be also applied to "value" outcomes other than money and gains (e.g. utility of a patient being healthy, or ill)
- Decision making:
- uses expected utilities (denoted EU)

$$
\begin{gathered}
E U(X)=\sum_{x \in \Omega_{X}} P(X=x) U(X=x) \\
U(X=x) \quad \text { the utility of outcome } \mathrm{x}
\end{gathered}
$$

Important !!!

- Under some conditions on preferences we can always design the utility function that fits our preferences

Utility theory

- Defines axioms on preferences that involve uncertainty and ways to manipulate them.
- Uncertainty is modeled through lotteries
- Lottery:

$$
[p: A ;(1-p): C]
$$

- Outcome A with probability p
- Outcome C with probability (1-p)
- The following six constraints are known as the axioms of utility theory. The axioms are the most obvious semantic constraints on preferences with lotteries.
- Notation:
\succ - preferable
\sim - indifferent (equally preferable)

Axioms of the utility theory

- Orderability: Given any two states, the a rational agent prefers one of them, else the two as equally preferable.

$$
(A \succ B) \vee(B \succ A) \vee(A \sim B)
$$

- Transitivity: Given any three states, if an agent prefers A to B and prefers B to C , agent must prefer A to C .

$$
(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)
$$

- Continuity: If some state B is between A and C in preference, then there is a p for which the rational agent will be indifferent between state B and the lottery in which A comes with probability p, C with probability (1-p).

$$
(A \succ B \succ C) \Rightarrow \exists p[p: A ;(1-p): C] \sim B
$$

Axioms of the utility theory

- Substitutability: If an agent is indifferent between two lotteries, A and B, then there is a more complex lottery in which A can be substituted with B .
$(A \sim B) \Rightarrow[p: A ;(1-p): C] \sim[p: B ;(1-p): C]$
- Monotonicity: If an agent prefers A to B, then the agent must prefer the lottery in which A occurs with a higher probability
$(A \succ B) \Rightarrow(p>q \Leftrightarrow[p: A ;(1-p): B] \succ[q: A ;(1-q): B])$
- Decomposability: Compound lotteries can be reduced to simpler lotteries using the laws of probability.

$$
\begin{aligned}
& {[p: A ;(1-p):[q: B ;(1-q): C]] \Rightarrow} \\
& {[p: A ;(1-p) q: B ;(1-p)(1-q): C]}
\end{aligned}
$$

Utility theory

If the agent obeys the axioms of the utility theory, then

1. there exists a real valued function U such that:

$$
\begin{aligned}
& U(A)>U(B) \Leftrightarrow A \succ B \\
& U(A)=U(B) \Leftrightarrow A \sim B
\end{aligned}
$$

2. The utility of the lottery is the expected utility, that is the sum of utilities of outcomes weighted by their probability

$$
U[p: A ;(1-p): B]=p U(A)+(1-p) U(B)
$$

3. Rational agent makes the decisions in the presence of uncertainty by maximizing its expected utility

Utility functions

We can design a utility function that fits our preferences if they satisfy the axioms of utility theory.

- But how to design the utility function for monetary values so that they incorporate the risk?
- What is the relation between utility function and monetary values?
- Assume we loose or gain $\$ 1000$.
- Typically this difference is more significant for lower values (around \$100-1000) than for higher values (\sim $\$ 1,000,000$)
- What is the relation between utilities and monetary value for a typical person?

Utility functions

- What is the relation between utilities and monetary value for a typical person?
- Concave function that flattens at higher monetary values

CS 2750 Machine Learning

Utility functions

- Expected utility of a sure outcome of 750 is 750

Utility functions

Assume a lottery L [0.5: 500, $0.5: 1000$]

- Expected value of the lottery $=750$
- Expected utility of the lottery $\mathrm{EU}(\mathrm{L})$ is different:

$$
-\mathrm{EU}(\mathrm{~L})=0.5 \mathrm{U}(500)+0.5 * \mathrm{U}(1000)
$$

Utility functions

- Expected utility of the lottery $\mathrm{EU}($ lottery L$)<\mathrm{EU}$ (sure 750)

- Risk aversion - a bonus is required for undertaking the risk

