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Decision making in the 
presence of  uncertainty II
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Information-gathering actions
• Many actions and their outcomes irreversibly change the 

world
• Information-gathering (exploratory) actions:

– make an inquiry about the world
– Key benefit: reduction in  the uncertainty

• Example: medicine
– Assume a patient is admitted to the hospital with some set of 

initial complaints
– We are uncertain about the underlying problem and consider 

a surgery, or a medication to treat them
– But there are often lab tests or observations that can help us 

to determine more closely the disease the patient suffers from
– Goal of lab tests: Reduce the uncertainty of outcomes of 

treatments so that better treatment option can be chosen 
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Decision-making with exploratory actions
In decision trees:
• Exploratory actions can be represented and reasoned 

about the same way as other actions.

How do we capture the effect of exploratory actions in the 
decision tree model?

• Information obtained through exploratory actions may affect 
the probabilities of later outcomes 
– Recall that the probabilities on later outcomes can be 

conditioned on past observed outcomes and past actions
– Sequence of past actions and outcomes is “remembered”

within the decision tree branch

CS 2750 Machine Learning

An oil wildcatter has to make a decision of whether to drill 
or not to drill on a specific site

• Chance of hitting an oil deposit:
• Oil: 40%
• No-oil: 60%

• Cost of drilling: 70K
• Payoffs: 

• Oil: 220K
• No-oil: 0 K

Oil wildcatter problem.
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Oil wildcatter problem
• Assume that in addition to the drill/no-drill choices we have an 

option to run the seismic resonance test
• Seismic resonance test results:

– Closed pattern (more likely when the hole holds the oil)
– Diffuse pattern (more likely when empty)

• Test cost: 10K

closed diffuse

Oil True
False
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Oil wildcatter problem.
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Oil wildcatter problem.
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• Alternative model
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Oil wildcatter problem.

• Decision tree probabilities
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Oil wildcatter problem.

• Decision tree probabilities
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Oil wildcatter problem.
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The presence of the test and its result affected our
decision:
if test =closed then drill
if test=diffuse then do not drill
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Value of information
• When the test makes sense?
• Only when its  result makes the decision maker to change his 

mind, that is he decides not to drill.
• Value of information:

– Measure of the goodness of the information from the test
– Difference between the expected value with and without the 

test information
• Oil wildcatter example:

– Expected value without the test = 18
– Expected value with the test =25.4
– Value of information for the seismic test = 7.4

CS 2750 Machine Learning

Utilities
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Selection based on expected values
• Until now: The optimal action choice was the option that 

maximized the expected monetary value.  
• But is the expected monetary value always the quantity we 

want to optimize? 
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Selection based on expected values
• Is the expected monetary value  always the quantity we 

want to optimize? 
• Answer: Yes, but only if we are risk-neutral.

• But what if we do not like the risk (we are risk-averse)?
• In that case we may want to get the premium for undertaking 

the risk (of loosing the money)
• Example: 

– we may prefer to get $101 for sure against $102 in 
expectation but with the risk of loosing the money

• Problem: How to model decisions and account for the risk?
• Solution: use utility function, and utility theory
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Utility function
• Utility function (denoted U)

– Quantifies how we “value” outcomes, i.e., it reflects our 
preferences 

– Can be also applied to “value” outcomes other than money 
and gains (e.g. utility of a patient being healthy, or ill)

• Decision making:
– uses expected utilities (denoted EU)

the utility of outcome x
Important !!!
• Under some conditions on preferences we can always design 

the utility function that fits our preferences

)()()( xXUxXPXEU
Xx

=== ∑
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)( xXU =
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Utility theory
• Defines axioms on preferences that involve uncertainty and 

ways to manipulate them. 
• Uncertainty is modeled through lotteries

– Lottery: 

• Outcome A with probability p
• Outcome C with probability (1-p)

• The following six constraints are known as the axioms of 
utility theory. The axioms are the most obvious semantic 
constraints on preferences with lotteries. 

• Notation:
- preferable
- indifferent (equally preferable)

]:)1(;:[ CpAp −

f
~
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Axioms of the utility theory
• Orderability: Given any two states, the a rational agent 

prefers one of them,  else the two as equally preferable. 

• Transitivity: Given any three states, if an agent prefers A to 
B and prefers B to C, agent must prefer A to C. 

• Continuity: If some state B is between A and C in 
preference, then there is a p for which the rational agent will 
be indifferent between state B and the lottery in which A 
comes with probability p, C with probability (1-p).

)~()()( BAABBA ∨∨ ff

)()()( CACBBA fff ⇒∧

BCpAppCBA ~]:)1(;:[)( −∃⇒ff
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Axioms of the utility theory
• Substitutability: If an agent is indifferent between two 

lotteries, A and B, then there is a more complex lottery in 
which A can be substituted with B. 

• Monotonicity: If an agent prefers A to B, then the agent 
must prefer the lottery in which A occurs with a higher 
probability 

• Decomposability: Compound lotteries can be reduced to 
simpler lotteries using the laws of probability. 

]:)1(;:[~]:)1(;:[)~( CpBpCpApBA −−⇒
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Utility theory
If the agent obeys the axioms of the utility theory, then
1. there exists a real valued function U such that:

2. The utility of the lottery is the expected utility, that is the 
sum of utilities of outcomes weighted by their probability

3. Rational agent makes the decisions in the presence of 
uncertainty by maximizing its expected utility

BABUAU f⇔> )()(
BABUAU ~)()( ⇔=
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Utility functions
We can design a utility function that fits our preferences if 

they satisfy the axioms of utility theory. 
• But how to design the utility function for monetary 

values so that they incorporate the risk?
• What is the relation between utility function and 

monetary values?
• Assume we loose or gain $1000. 

– Typically this difference is more significant for lower 
values (around $100 -1000) than for higher values (~ 
$1,000,000)

• What is the relation between utilities and monetary value 
for a typical person?
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Utility functions
• What is the relation between utilities and monetary value 

for a typical person?
• Concave function that flattens at higher monetary values

utility

Monetary value100,000

CS 2750 Machine Learning

Utility functions
• Expected utility of  a sure outcome of 750 is 750

utility

Monetary value1000500 750

EU(sure 750)
U(x)
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Utility functions
Assume a lottery L  [0.5: 500, 0.5:1000]
• Expected value of the lottery = 750
• Expected utility of the lottery  EU(L) is different:

– EU(L) = 0.5U(500) + 0.5*U(1000)

utility

Monetary value1000500 750

EU line for lotteries 
with outcomes 500 and 1000EU(lottery L)

Lottery L: [0.5: 500, 0.5:1000] 

U(x)
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Utility functions

• Expected utility of the lottery  EU(lottery L) < EU(sure 750)

• Risk aversion – a bonus is required for undertaking the risk 

utility

Monetary value1000500 750

EU(lottery L)

EU(sure 750)

Lottery L: [0.5: 500, 0.5:1000] 

U(x)


