# Modeling uncertainty 

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

## KB systems. Medical example.

We want to build a KB system for the diagnosis of pneumonia.
Problem description:

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
- Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.
Representation of a patient case:
- Statements that hold (are true) for the patient.
E.g: $\quad$ Fever $=$ True

Cough =False
WBCcount=High
Diagnostic task: we want to decide whether the patient suffers from the pneumonia or not given the symptoms

## Uncertainty

To make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis


Problem: disease/symptoms relations are not deterministic

- They are uncertain (or stochastic) and vary from patient to patient


## Uncertainty

Two types of uncertainty:

- Disease $\longrightarrow$ Symptoms uncertainty
- A patient suffering from pneumonia may not have fever all the times, may or may not have a cough, white blood cell test can be in a normal range.
- Symptoms $\longrightarrow$ Disease uncertainty
- High fever is typical for many diseases (e.g. bacterial diseases) and does not point specifically to pneumonia
- Fever, cough, paleness, high WBC count combined do not always point to pneumonia


## Uncertainty

## Why are relations uncertain?

- Observability
- It is impossible to observe all relevant components of the world
- Observable components behave stochastically even if the underlying world is deterministic
- Efficiency, capacity limits
- It is often impossible to enumerate and model all components of the world and their relations
- abstractions can become stochastic

Humans can reason with uncertainty !!!

- Can computer systems do the same?


## Modeling the uncertainty

Key challenges:

- How to represent the relations in the presence of uncertainty?
- How to manipulate such knowledge to make inferences?
- Humans can reason with uncertainty.



## Methods for representing uncertainty

## Extensions of the propositional and first-order logic

- Use, uncertain, imprecise statements (relations)


## Example: Propositional logic with certainty factors

Very popular in 70-80s in knowledge-based systems (MYCIN)

- Facts (propositional statements) are assigned a certainty value reflecting the belief in that the statement is satisfied:

$$
C F(\text { Pneumonia }=\text { True })=0.7
$$

- Knowledge: typically in terms of modular rules

If 1. The patient has cough, and
2. The patient has a high WBC count, and
3. The patient has fever

Then with certainty 0.7
the patient has pneumonia

## Certainty factors

Problem 1:

- Chaining of multiple inference rules (propagation of uncertainty)


## Solution:

- Rules incorporate tests on the certainty values
$(A$ in $[0.5,1]) \wedge(B$ in $[0.7,1]) \rightarrow C$ with $\mathrm{CF}=0.8$


## Problem 2:

- Combinations of rules with the same conclusion
$(A$ in $[0.5,1]) \wedge(B$ in $[0.7,1]) \rightarrow C$ with $\mathrm{CF}=0.8$
$(E$ in $[0.8,1]) \wedge(D$ in $[0.9,1]) \rightarrow C$ with $\mathrm{CF}=0.9$
- What is the resulting $C F(C)$ ?


## Certainty factors

- Combination of multiple rules
$(A$ in $[0.5,1]) \wedge(B$ in $[0.7,1]) \rightarrow C$ with $\mathrm{CF}=0.8$
$(E$ in $[0.8,1]) \wedge(D$ in $[0.9,1]) \rightarrow C$ with $\mathrm{CF}=0.9$
- Three possible solutions

$$
\begin{aligned}
& C F(C)=\max [0.9 ; 0.8]=0.9 \\
& C F(C)=0.9 * 0.8=0.72 \\
& C F(C)=0.9+0.8-0.9 * 0.8=0.98
\end{aligned}
$$

Problems:

- Which solution to choose?
- All three methods break down after a sequence of inference rules


## Methods for representing uncertainty

## Probability theory

- A well defined theory for modeling and reasoning in the presence of uncertainty
- A natural choice to replace certainty factors


## Facts (propositional statements)

- Are represented via random variables with two or more values Example: Pneumonia is a random variable values: True and False
- Each value can be achieved with some probability:

$$
\begin{aligned}
& P(\text { Pneumonia }=\text { True })=0.001 \\
& P(\text { WBCcount }=\text { high })=0.005
\end{aligned}
$$

## Probability theory

- Well-defined theory for representing and manipulating statements with uncertainty
- Axioms of probability:

For any two propositions A, B.

1. $0 \leq P(A) \leq 1$
2. $\quad P($ True $)=1$ and $P($ False $)=0$
3. $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

True


## Modeling uncertainty with probabilities

Probabilistic extension of propositional logic.

- Propositions:
- statements about the world
- Represented by the assignment of values to random variables
- Random variables:
! - Boolean Pneumonia is either True,False Random variable Values
! - Multi-valued Pain is one of \{Nopain,Mild,Moderate,Severe\} Random variable Values
- Continuous HeartRate is a value in $\langle 0 ; 250\rangle$ Random variable Values


## Probabilities

Measure the degree of our belief in propositions

$$
\begin{aligned}
& P(\text { Pneumonia }=\text { True })=0.001 \\
& P(\text { Pneumonia }=\text { False })=0.999 \\
& P(\text { WBCcount }=\text { high })=0.005
\end{aligned}
$$

## Probability distribution

- Defines probabilities for all possible value assignments to a random variable
- Values are mutually exclusive
$P($ Pneumonia $=$ True $)=0.001$
$P($ Pneumonia $=$ False $)=0.999$

| Pneumonia | $\mathbf{P}($ Pneumonia $)$ |
| :---: | :---: |
| True | 0.001 |
| False | 0.999 |

## Probability distribution

Defines probability for all possible value assignments
Example 1:
$P($ Pneumonia $=$ True $)=0.001$
$P($ Pneumonia $=$ False $)=0.999$

| Pneumonia | $\mathbf{P}($ Pneumonia $)$ |
| :---: | :---: |
| True | 0.001 |
| False | 0.999 |

$$
P(\text { Pneumonia }=\text { True })+P(\text { Pneumonia }=\text { False })=1
$$

Probabilities sum to 1 !!!

## Example 2:

$P($ WBCcount $=$ high $)=0.005$
$P($ WBCcount $=$ normal $)=0.993$
$P($ WBCcount $=$ low $)=0.002$

| WBCcount | $\mathbf{P}($ WBCcount $)$ |
| :---: | :---: |
| high | 0.005 |
| normal | 0.993 |
| low | 0.002 |

## Joint probability distribution

Joint probability distribution (for a set variables)

- Defines probabilities for all possible assignments of values to variables in the set
Example: variables Pneumonia and WBCcount
$\mathbf{P}$ ( pneumonia, WBCcount)
Is represented by $2 \times 3$ matrix
WBCcount

|  | high | normal | low |
| :--- | :---: | :---: | :---: |
| True | 0.0008 | 0.0001 | 0.0001 |
| False | 0.0042 | 0.9929 | 0.0019 |

## Joint probabilities

## Marginalization

- reduces the dimension of the joint distribution
- Sums variables out

| $\mathbf{P}$ (pneumonia, WBCcount) |  |  | $2 \times 3$ matrix |  | $\mathbf{P}$ (Pneumonia) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pneumonia | WBCcount |  |  |  |  |
|  |  | high | normal | low | . |
|  | True | 0.0008 | 0.0001 | 0.0001 | 0.001 |
|  | False | 0.0042 | 0.9929 | 0.0019 | 0.999 |
|  |  | 0.005 | 0.993 | 0.002 |  |
| $\mathbf{P}$ (WBCcount) |  |  |  |  |  |
| Marginalization (here summing of columns or rows) |  |  |  |  |  |

## Joint probabilities

Is it possible to infer the joint from marginals?

| $\mathbf{P}$ ( pneumonia, WBCcount) |  |  | $2 \times 3$ matrix |  | $\mathbf{P}$ (Pneumonia) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pneumonia |  |  | VBCcount |  |  |
|  |  | high | normal | low | . |
|  | True | ? | ? | ? | 0.001 |
|  | False | ? | ? | ? | 0.999 |
|  |  | 0.005 | 0.993 | 0.002 |  |

Marginalization (here summing of columns or rows)

## Joint probabilities

Is it possible to infer the joint from marginals?
$\mathbf{P}$ (pneumonia,WBCcount) $2 \times 3$ matrix

| Pneumonia | WBCcount |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | high | normal | low |  |
|  | True | ? | ? | ? | 0.001 |
|  | False | ? | ? | ? | 0.999 |
|  |  | 0.005 | 0.993 | 0.002 |  |

Is there any assumption under which this is possible?

## Joint probabilities

Is it possible to infer the joint from marginals?

| $\begin{aligned} & \mathbf{P}(\text { pneumonia, WBCcount) } 2 \times 3 \text { matrix } \\ & \text { WBCcount }\end{aligned}$ |  |  |  |  | $\mathbf{P}(\text { Pneumonia })$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Pneumonia |  | high | normal | low |  |
|  | True | ? | ? | ? | $\begin{aligned} & 0.001 \\ & 0.999 \end{aligned}$ |
|  | False | ? | ? | ? |  |
|  |  | 0.005 | 0.993 | 0.002 |  |

$\mathbf{P}$ (WBCcount)
Is there any assumption under which this is possible? Yes. Independence.
$\mathbf{P}($ pneumonia, WBCcount $)=P($ pneumonia $) P($ WBCcount $)$

## Full joint distribution

- The joint distribution for all variables in the problem
- It defines the complete probability model for the problem

Example: pneumonia diagnosis
Variables: Pneumonia, Fever, Paleness, WBCcount, Cough
Full joint defines the probability for all possible assignments of values to Pneumonia, Fever, Paleness, WBCcount, Cough

P(Pneumonia $=T$, WBCcount $=$ High, Fever $=T$, Cough $=T$, Paleness $=T)$
P(Pneumonia $=T$, WBCcount $=$ High, Fever $=T$, Cough $=T$, Paleness $=F)$
$P($ Pneumonia $=T$, WBCcount $=$ High, Fever $=T$, Cough $=F$, Paleness $=T)$
... etc

## Conditional probabilities

## Conditional probability distribution

- Defines probabilities for all possible assignments, given a fixed assignment to some other variable values

$$
P(\text { Pneumonia }=\text { true } \mid \text { WBCcount }=\text { high })
$$

$\mathbf{P}($ Pneumonia $\mid$ WBCcount $) \quad 3$ element vector of 2 elements WBCcount

Pneumonia

|  | high | normal | low |
| :---: | :---: | :---: | :---: |
| True | 0.08 | 0.0001 | 0.0001 |
| False | 0.92 | 0.9999 | 0.9999 |
|  | 1.0 | 1.0 | 1.0 |

    \(P(\) Pneumonia \(=\) true \(\mid\) WBCcount \(=\) high \()\)
    \(+P(\) Pneumonia \(=\) false \(\mid\) WBCcount \(=\) high \()\)
    
## Conditional probabilities

## Conditional probability

- Is defined in terms of the joint probability:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)} \text { s.t. } P(B) \neq 0
$$

- Example:
$P($ pneumonia $=$ true $\mid$ $W B C$ count $=$ high $)=$

$$
\frac{P(\text { pneumonia }=\text { true }, \text { WBCcount }=\text { high })}{P(\text { WBCcount }=\text { high })}
$$

$$
\begin{aligned}
& P(\text { pneumonia }=\text { false } \mid \text { WBCcount }=\text { high })= \\
& \\
& \qquad \frac{P(\text { pneumonia }=\text { false }, \text { WBCcount }=\text { high })}{P(\text { WBCcount }=\text { high })}
\end{aligned}
$$

## Conditional probabilities

- Conditional probability distribution.

$$
P(A \mid B)=\frac{P(A, B)}{P(B)} \text { s.t. } P(B) \neq 0
$$

- Product rule. Join probability can be expressed in terms of conditional probabilities

$$
P(A, B)=P(A \mid B) P(B)
$$

- Chain rule. Any joint probability can be expressed as a product of conditionals

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{1,}, \ldots X_{n-1}\right) \\
& =P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{n-1} \mid X_{1,} \ldots X_{n-2}\right) P\left(X_{1,} \ldots X_{n-2}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1,} \ldots X_{i-1}\right)
\end{aligned}
$$

## Bayes rule

Conditional probability.

$$
P(A \mid B)=\frac{P(A, B)}{P(B)} P P(A, B)=P(B \mid A) P(A)
$$

Bayes rule:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

When is it useful?

- When we are interested in computing the diagnostic query from the causal probability

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

- Reason: It is often easier to assess causal probability
- E.g. Probability of pneumonia causing fever
vs. probability of pneumonia given fever


## Bayes rule

Assume a variable A with multiple values $a_{1}, a_{2}, \ldots a_{k}$
Bayes rule can be rewritten as:

$$
\begin{aligned}
P\left(A=a_{j} \mid B=b\right) & =\frac{P\left(B=b \mid A=a_{j}\right) P\left(A=a_{j}\right)}{P(B=b)} \\
& =\frac{P\left(B=b \mid A=a_{j}\right) P\left(A=a_{j}\right)}{\sum_{i=1}^{k} P\left(B=b \mid A=a_{j}\right) P\left(A=a_{j}\right)}
\end{aligned}
$$

Used in practice when we want to compute:

$$
\mathbf{P}(A \mid B=b) \quad \text { for all values of } \quad a_{1}, a_{2}, \ldots a_{k}
$$

## Bayes Rule in a simple diagnostic inference

- Device (equipment) operating normally or malfunctioning.
- Operation of the device sensed indirectly via a sensor
- Sensor reading is either high or low

| Device status |  | $\mathbf{P ( \text { Device status) }}$ |  |
| :--- | :--- | :--- | :---: |
| normal | malfunctioning |  |  |
| 0.9 | 0.1 |  |  |

## Bayes Rule in a simple diagnostic inference.

- Diagnostic inference: compute the probability of device operating normally or malfunctioning given a sensor reading
$\mathbf{P}($ Device status $\mid$ Sensor reading $=$ high $)=$ ?
$=\binom{P($ Device status $=$ normal $\mid$ Sensor reading $=$ high $)}{P($ Device status $=$ malfunctio ning $\mid$ Sensor reading $=$ high $)}$
- Note that typically the opposite conditional probabilities are given to us: they are much easier to estimate
- Solution: apply Bayes rule to reverse the conditioning variables


## Probabilistic inference

## Various inference tasks:

- Diagnostic task. (from effect to cause)

$$
\mathbf{P}(\text { Pneumonia } \mid \text { Fever }=T)
$$

- Prediction task. (from cause to effect)

$$
\mathbf{P}(\text { Fever } \mid \text { Pneumonia }=T)
$$

- Other probabilistic queries (queries on joint distributions).

$$
\begin{aligned}
& \mathbf{P}(\text { Fever }) \\
& \mathbf{P}(\text { Fever }, \text { ChestPain })
\end{aligned}
$$

## Inference

## Any query can be computed from the full joint distribution !!!

- Joint over a subset of variables is obtained through marginalization

$$
P(A=a, C=c)=\sum_{i} \sum_{j} P\left(A=a, B=b_{i}, C=c, D=d_{j}\right)
$$

- Conditional probability over set of variables, given other variables' values is obtained through marginalization and definition of conditionals

$$
\begin{aligned}
& P(D=d \mid A=a, C=c)=\frac{P(A=a, C=c, D=d)}{P(A=a, C=c)} \\
&=\frac{\sum_{i} P\left(A=a, B=b_{i}, C=c, D=d\right)}{\sum_{i} \sum_{j} P\left(A=a, B=b_{i}, C=c, D=d_{j}\right)} \\
& \text { cs } 2740 \text { Knowledge Representation }
\end{aligned}
$$

## Inference

Any query can be computed from the full joint distribution !!!

- Any joint probability can be expressed as a product of conditionals via the chain rule.

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{1,} \ldots X_{n-1}\right) \\
= & P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{n-1} \mid X_{1,} \ldots X_{n-2}\right) P\left(X_{1,} \ldots X_{n-2}\right) \\
= & \prod_{i=1}^{n} P\left(X_{i} \mid X_{1,} \ldots X_{i-1}\right)
\end{aligned}
$$

- Sometimes it is easier to define the distribution in terms of conditional probabilities:
- E.g.

$$
\begin{aligned}
& \mathbf{P}(\text { Fever } \mid \text { Pneumonia }=T) \\
& \mathbf{P}(\text { Fever } \mid \text { Pneumonia }=F)
\end{aligned}
$$

## Modeling uncertainty with probabilities

- Defining the full joint distribution makes it possible to represent and reason with uncertainty in a uniform way
- We are able to handle an arbitrary inference problem


## Problems:

- Space complexity. To store a full joint distribution we need to remember $O\left(\mathrm{~d}^{\mathrm{n}}\right)$ numbers.
$n$ - number of random variables, $d$ - number of values
- Inference (time) complexity. To compute some queries requires $O\left(\mathrm{~d}^{\mathrm{n}}\right)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?


## Medical diagnosis example

- Space complexity.
- Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), WBCcount (3: high, normal, low), paleness (2: T,F)
- Number of assignments: $2 * 2 * 2 * 3 * 2=48$
- We need to define at least 47 probabilities.
- Time complexity.
- Assume we need to compute the marginal of Pneumonia=T from the full joint
$P($ Pneumonia $=T)=$
$=\sum_{i \in T, F} \sum_{j \in T, F} \sum_{k=h, h, l} \sum_{u \in T, F} P($ Pneumonia $=T$, Fever $=i$, Cough $=j$, WBCcount $=k$, Pale $=u)$
- Sum over: $2 * 2 * 3 * 2=24$ combinations


## Modeling uncertainty with probabilities

- Knowledge based system era (70s - early 80's)
- Extensional non-probabilistic models
- Solve the space, time and acquisition bottlenecks in probability-based models
- froze the development and advancement of KB systems and contributed to the slow-down of AI in 80 s in general
- Breakthrough (late 80s, beginning of 90s)
- Bayesian belief networks
- Give solutions to the space, acquisition bottlenecks
- Partial solutions for time complexities
- Bayesian belief network

