
1

CS 2740 Knowledge representation M. Hauskrecht

CS 2740 Knowledge representation
Lecture 16

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Semantic web

CS 2740 Knowledge representation M. Hauskrecht

Semantic web

versus

html

xml

Extensible Markup Language (XML)
a general-purpose specification for
creating custom markup languages

Hypertext Markup Language (HTML)
a language for structuring text based
Documents supplemented with interactive
forms, embedded images and objects

2

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
The Semantic Web provides a common framework that allows data and

knowledge to be shared and reused across application, enterprise, and
community boundaries.

The development of the Sematic web is a collaborative effort led by W3C with
participation from a large number of researchers and industrial partners.

It defines standards for exchanging knowledge and for sharing
conceptualizations.

Basic standards:
• RDF - Resource Description Framework, representation of

information/data for the purpose of sharing
– Based on XML - Extensible Markup Language format - a general-

purpose specification for building custom markup languages
• OWL – a language for sharing vocabularies, sets of terms supporting web

searches and other applications (a part of RDF)

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
In terms of the knowledge representation and reasoning SW lets us:
• Represent the knowledge
• Support search queries on knowledge and matches
• Support inference
Differences from other KR systems:
• Multiple sources of information and knowledge built for

potentially different purposes
• Ambiguities may arise (the same term with two different

meanings or two different terms with the same meaning)
• Dynamically changing environment – knowledge is added at fast

pace so it should be robust to handle that

3

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
Benefits:
• knowledge integration,
• knowledge storage,
• knowledge searching,
• and knowledge inference.

CS 2740 Knowledge representation M. Hauskrecht

Semantic web
Benefits:
• knowledge integration,
• knowledge storage,
• knowledge searching,
• and knowledge inference.

4

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Benefit of large amounts of information and knowledge on the web stands and

falls on the data/knowledge integration
Technical challenges:
• Location: where the data/knowledge resides. The location of a Semantic Web

resource is defined by the Uniform Resource Identifier (URI). A URI is
simply a formatted string that identifies - via name, location, or any other
characteristic - a resource. A standard web link is a form of a URI. URI
allows us to label a Semantic Web source with a findable, unique location.

• Query Protocol: We need to interact with web resources. We need a
communication language. The protocol for the Semantic Web uses standards
such as http to form a flexible, easily understood, request/response exchange.

• Format: The data must be in a comprehensive and translatable format. The
Semantic Web uses a standard format - the OWL Web Ontology Language.
It is based on the Resource Description Framework (RDF) standard and
Extensible Markup Language (XML).

Technical challenges are resolved by standards

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Other Challenges
• Timely, Authoritative: The data must be trusted and be up-to-date. It is

possible to have multiple answers to the same question. In addition,
information may get outdated. The Semantic Web lets you to deal directly
with the actual source to avoid the problem. You need not maintain
complex synchronization unless it is absolutely necessary due to
performance or other requirements.

The key challenge:
• Purpose: We have to align the data with our purpose. This may require

translation and modifications. It needs to fit your world view be it English,
medical, financial to name but a few. This is about getting right the
semantic. For example, we can tie a person in one data source with an
individual from another data source - they represent the same meaning or a
related meaning.

• Semantic web standards do enable easier and more efficient data sharing
and integration but really reach their full potential by the ability to align
purpose across different data sources.

5

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Three steps of integration:
• Aggregation:

– Combines the Semantic Web data sources into one
unified, virtual data source.

• Mapping/Binding:
– Associates similar references with each other and builds

upon data in existing references. For example synonyms
are identified.

• Rules:
– Enables more sophisticated alignment and enrichment

such as conditional logic that adds information based on
the condition of other data

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example: from Ivan Herman

6

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example:

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example: add data from another publisher

7

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example:

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example: integration

8

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example:

The same

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example:

Add ontology

9

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example: adding more knowledge

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: knowledge integration
Example: and go on

10

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
The Semantic Web is always written in the same language:
• The OWL Web Ontology Language

(http://www.w3.org/TR/owl-ref/)
The Web Ontology Language OWL is:
• a semantic markup language for publishing and sharing

ontologies on the World Wide Web.
• a vocabulary extension of RDF (the Resource Description

Framework)
OWL contains all the reference information to define any term

contained within
• it maintains its own definition of each and every term (it is self-

referential).

CS 2740 Knowledge representation M. Hauskrecht

RDF
Resource Description Framework (RDF)
• a data model that lets us make statements about Web resources

in the form of subject-predicate-object sentences, called triples:
• The subject denotes the resource,
• the predicate expresses a subject-object relationship
Example: "The sky has the color blue"
• “a sky” is a subject
• "has the color“ is a predicate
• "blue“ is an object
RDF is an abstract model with several serialization formats (i.e.,

file formats): typically XML

11

CS 2740 Knowledge representation M. Hauskrecht

Ontology
If more than one person is building a knowledge base,
they must be able to share the conceptualization.

• A conceptualization is a mapping from the problem domain
into the representation.

• A conceptualization specifies:
– What types of objects are being modeled
– The vocabulary for specifying objects, relations and

properties
– The meaning or intention of the relations or properties

• An ontology is a specification of a conceptualization.

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
- <owl:Ontology rdf:about="">
<rdfs:comment>This is a weather forecast ontology.</rdfs:comment>
<rdfs:label>Weather Site Ontology</rdfs:label>
</owl:Ontology>

<!-- Weather Observation Class -->
- <owl:Class rdf:ID="WeatherObservation">

<rdfs:label>Weather Observation</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasLocation" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasTime" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

…

Ontology
definition

Class
definition

Class
properties

12

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
…
<rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasTemperature" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasHumidity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasWindSpeed" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Class
properties

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Location Class -->
- <owl:Class rdf:ID="Location">

<rdfs:label>Location: City, State</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasState" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasCity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

- <owl:DatatypeProperty rdf:ID="hasState">
<rdfs:label>The State that this location is in. Abbreviated.</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

Another
class
definition

13

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Location Class -->
- <owl:Class rdf:ID="Location">

<rdfs:label>Location: City, State</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasState" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasCity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

- <owl:DatatypeProperty rdf:ID="hasState">
<rdfs:label>The State that this location is in. Abbreviated.</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

Another
class
definition

hasState
property
datatype

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Precipitation Class -->
- <owl:Class rdf:ID="Precipitation">
<rdfs:label>Precipitation Condition</rdfs:label>

- <owl:oneOf rdf:parseType="Collection">
<Precipitation rdf:about="#Snow" />
<Precipitation rdf:about="#Rain" />
<Precipitation rdf:about="#Thunderstorm" />
<Precipitation rdf:about="#None" />
</owl:oneOf>
</owl:Class>

14

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL

<!-- Properties -->
- <owl:ObjectProperty rdf:ID="hasLocation">

<rdfs:label>Location of observation.</rdfs:label>
<rdfs:range rdf:resource="#Location" />
</owl:ObjectProperty>

- <owl:DatatypeProperty rdf:ID="hasTime">
<rdfs:label>Date and time of observation.</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="hasTemperature">
<rdfs:label>Temperature, farenheit</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="hasHumidity">
<rdfs:label>Relative humidity, percent.</rdfs:label>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
</owl:DatatypeProperty>

Properties
for Weather
Observation class

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
Example: Aggregating knowledge from multiple ontologies

<owl:Ontology rdf:about="">
<rdfs:comment>This is the project assignment client ontology</rdfs:comment>
<rdfs:label>Project Assignment Client Ontology</rdfs:label>
<owl:imports rdf:resource="http://localhost/contractors/ont/contractor-ont.owl"

/>
<owl:imports rdf:resource="http://localhost/weather/ont/weather-ont.owl" />
<owl:imports rdf:resource="http://localhost/projectsite/ont/project-ont.owl" />
</owl:Ontology>

New ‘Project assignment’ ontology
Uses 3 ontologies: weather, project,
contractor

15

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Weather -->
- <owl:Class rdf:ID="CurrentWeather">
<rdfs:subClassOf rdf:resource="http://localhost/weather/ont/weather-

ont.owl#WeatherObservation" />
<owl:equivalentClass rdf:resource="http://localhost/weather/ont/weather-

ont.owl#WeatherObservation" />
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasTemperature" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#forCity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

…
</owl:Class>

Class Current Weather
in the new Ontology:
equivalent class
Weather Observation

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL
<!-- Weather -->
- <owl:Class rdf:ID="CurrentWeather">
<rdfs:subClassOf rdf:resource="http://localhost/weather/ont/weather-

ont.owl#WeatherObservation" />
<owl:equivalentClass rdf:resource="http://localhost/weather/ont/weather-

ont.owl#WeatherObservation" />
- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#hasTemperature" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
<owl:onProperty rdf:resource="#forCity" />
<owl:cardinality>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

…
</owl:Class>

Different properties as used
for the weather observation
class before. Temperature,
for state, for city, is hot, is dry etc.

16

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: OWL

<owl:DatatypeProperty rdf:ID="hasTemperature">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
<owl:equivalentProperty rdf:resource="http://localhost/weather/ont/weather-

ont.owl#hasTemperature" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="forCity">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="forState">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="isWarm">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean" />
</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="isDry">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean" />
</owl:DatatypeProperty>

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: aggregation of sources
• OWL contains all the reference information to define any term

contained within - it maintains its own definition of each and
every term (it is self-referential).

• Consequence: Aggregation of multiple sources is easy.
– We can simply add any OWL data to each other - in any

combination or order . Unlike relational databases, the
structure (i.e. schema) or ontology is just another set of
statements within a Semantic Web data source. You can
simply combine multiple OWL sources together. You cannot
just pour relational database data into another database
without significant work behind the scenes with the databases
schemas to clean up conflicts and the like.

With OWL, you can simply query the knowledge structure the
same way you query any instance data. An OWL query doesn't
differentiate between the structure and the instance data.

17

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: mapping/binding
• More than one ontology may exist
• The same term may have multiple entries but it really can mean

the same thing at the end
• Mapping allows us to accomplish two unifying actions;

– declaring synonyms and
– establishing relationships.

Synonyms: we can declare the two terms used in two different
resources to be the same.

Relations: inheritance relations among terms can be defined

CS 2740 Knowledge representation M. Hauskrecht

Semantic web: integration with rules
Rules enables more complex knowledge aggregation methods.
We can use if/then constructs to establish relationships and

groupings.
Rules can also add flexibility to your integration by handling

special cases.
– Example: the weather ontology contains temperatures

whereas the project ontology contains broader classifications
such as hot and cold. We can establish a rule to convert
certain temperatures to the correct hot or cold classification.

Rules can exist alongside with OWL as part of a the knowledge
base, or reside in the programs that manipulate the
Semantic Web.

