<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

CS 2740 Knowledge Representation

M. Hauskrecht

Formal: Inheritance hierarchy

An **inheritance hierarchy** $G = \langle V, E \rangle$ is a directed, acyclic graph (DAG) with positive and negative edges, intended to denote "(normally) is-a" and "(normally) is-not-a", respectively.

- positive edges are written $a \bullet x$
- negative edges are written $a \bullet \neg x$

A sequence of edges is a path:

- a positive path is a sequence of one or more positive edges $a \bullet \dots \bullet x$
- a negative path is a sequence of positive edges followed by a single negative
- edge $a \bullet \dots \bullet v \bullet \neg x$

Note: there are no paths with more than 1 negative edge.

- Also: there might be 0 positive edges.
- A path (or argument) supports a conclusion:
 - $-a \bullet \dots \bullet x$ supports the conclusion "a is an x"
 - $-a \bullet \dots \bullet v \bullet \neg x$ supports "*a* is not an *x*"

Note: a conclusion may be supported by many arguments However: not all arguments are equally believable...

CS 2740 Knowledge Representation

M. Hauskrecht

Support and Admissibility	
G supports a path $a \bullet sl \bullet \dots \bullet sn \bullet (\neg)x$ if the correspondence of edges $\{a \bullet sl \bullet \dots \bullet sn \bullet (\neg)x\}$ is in E, and the path admissible.	nding set is
The hierarchy G supports a conclusion <i>a</i> is <i>x</i> (or <i>a</i> is no supports some corresponding path	(x) of (x) of (x)
A path is admissible if every edge in it is admissible.	
An edge $v \bullet x$ is admissible in G wrt <i>a</i> if there is a positivity $s I \bullet \dots \bullet sn \bullet v$ ($n \ge 0$) in E and	ve path $a \bullet$
1. each edge in $a \bullet sl \bullet \dots \bullet sn \bullet v$ is admissible in G v (recursively);	vrt a
2. no edge in $a \bullet sl \bullet \bullet sn \bullet v$ is redundant in G wrth below);	t a (see
3. no intermediate node <i>a</i> , <i>s</i> 1,, <i>sn</i> is a preemptor of <i>v</i> (see below).	• x wrt a
A negative edge $v \bullet \neg x$ is handled analogously.	
CS 2740 Knowledge Representation	M. Hauskrecht

Subtleties	
What to believe?	
• "credulous" reasoning: choose a preferred extension and bel conclusions supported	ieve all the
• "skeptical" reasoning: believe the conclusions from any path the by all preferred extensions	hat is supported
• "ideally skeptical" reasoning: believe the conclusions that are	supported by
all preferred extensions	
Note: ideally skeptical reasoning cannot be computed in a path-ba	ased way
(conclusions may be supported by different paths in each extensi	on)
We've been doing "upwards" reasoning	
• start at a node and see what can be inherited from its ancestor	nodes
 there are many variations on this definition; none has emerged upon, or "correct" one 	l as the agreed
 an alternative looks from the top and sees what propagates dow more efficient 	wn upwards is
CS 2740 Knowledge Representation	M. Hauskrec