CS 2740 Knowledge Representation
Lecture 11

I. Production systems.
II. Frame-based systems.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge-based system

Knowledge base

Inference engine

* Knowledge base:

— A set of sentences that describe the world in some formal
(representational) language (e.g. first-order logic)

— Domain specific knowledge
* Inference engine:

— A set of procedures that work upon the representational
language and can infer new facts or answer KB queries
(e.g. resolution algorithm, forward chaining)

— Domain independent

CS 2740 Knowledge Representation M. Hauskrecht

Automated reasoning systems

Theorem provers

— Prove sentences in the first-order logic. Use inference rules,
resolution rule and resolution refutation.

Deductive retrieval systems
— Systems based on rules (KBs in Horn form)
— Prove theorems or infer new assertions
Production systems <
— Systems based on rules with actions in antecedents
— Forward chaining mode of operation
Semantic networks

— Graphical representation of the world, objects are nodes in the
graphs, relations are various links

Frames: -

— object oriented representation, some procedural control of
inference

CS 2740 Knowledge Representation M. Hauskrecht

Production systems

Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:
* A Rule base (includes rules)
* A Working memory (includes facts)
Rules: a special type of if — then rule
DPiANDy Ao P, = a),0,,...,4,
Antecedent: Consequent:
A conjunction of conditions a sequence of actions
Basic operation:
* Check if the antecedent of a rule is satisfied
» Decide which rule to execute (if more than one rule is satisfied)
» Execute actions in the consequent of the rule

CS 2740 Knowledge Representation M. Hauskrecht

Working memory

* Consists of a set of facts — statements about the world but also
can represent various data structures

» The exact syntax and representation of facts may differ across
different systems

* Examples:

— predicates

— such as Red(car12)

— but only ground statements

or

— (type attrl:valuel attr2:value2 ...) objects
such as: (person age 27 home Toronto)
The type, attributes and values are all atoms

CS 2740 Knowledge Representation M. Hauskrecht

Rules

PiANDy Ao D, = A,0,,...,04,
* Antecedents: conjunctions of conditions
* Examples:
— a conjunction of literals 4(x) A B(x) A C(y)
— simple negated or non-negated statements in predicate logic
s or
— conjunctions of conditions on objects/object
— (type attrl specl attr2 spec2 ...)
— Where specs can be an atom, a variable, expression, condition
(person age [n+4] occupation x)
(person age {<23 A>6})

CS 2740 Knowledge Representation M. Hauskrecht

Production systems

DPiNDy,A... D, = a,,0,,...,4,
Consequent: a sequence of actions
An action can be:
— ADD the fact to the working memory (WM)
— REMOVE the fact from the WM
— MODIFY an attribute field
— QUERY the user for input, etc ...
Examples:
A(X)AB(x)AC(y) = add D(x)
Or
(Student name x) = ADD (Person name x)

CS 2740 Knowledge Representation

M. Hauskrecht

Production systems

Use forward chaining to do reasoning:

— If the antecedent of the rule is satisfied (rule is said to be
“active”) then its consequent can be executed (it is “fired”)

Problem: Two or more rules are active at the same time.

Which one to execute next?

R27 |Conditions R27| \J =—> | Actions R27
R105 |Conditions R105 \J —> Actions R105

Strategy for selecting the rule to be fired from among possible

candidates is called conflict resolution

CS 2740 Knowledge Representation

M. Hauskrecht

Production systems

Why is conflict resolution important? Or, Why do we care
about the order?

Assume that we have two rules and the preconditions of both
are satisfied:

R1: A(x)AB(x)AC(y) = add D(x)
R2: A(x)AB(x)A E(z) = delete A(x)

What can happen if rules are triggered in different order?

CS 2740 Knowledge Representation M. Hauskrecht

Production systems

Why is conflict resolution important? Or, Why do we care
about the order?

Assume that we have two rules and the preconditions of both
are satisfied:

R1: A(x)AB(x)AC(y)= add D(x)
R2: A(x)AB(x)A E(z) = delete A(x)

What can happen if rules are triggered in different order?

— If R1 goes first, R2 condition is still satisfied and we infer
D(x)

— If R2 goes first we may never infer D(x)

CS 2740 Knowledge Representation M. Hauskrecht

Production systems

Problems with production systems:
— Additions and Deletions can change a set of active rules;

— If a rule contains variables testing all instances in which the
rule is active may require a large number of unifications.

— Conditions of many rules may overlap, thus requiring to

repeat the same unifications multiple times.
Solution: Rete algorithm

— gives more efficient solution for managing a set of active
rules and performing unifications

— Implemented in the system OPS-5 (used to implement
XCON - an expert system for configuration of DEC
computers)

CS 2740 Knowledge Representation M. Hauskrecht

Rete algorithm

Assume a set of rules:
A(x)AB(x)AC(y)= add D(x)
A(x)AB(y)A D(x) = add E(x)
A(x)AB(x)A E(z) = delete A(x)
ARG 0, 4(2), B(2), B3). B(4),C(5)
Rete:

— Compiles the rules to a network that merges conditions of
multiple rules together (avoid repeats)

— Propagates valid unifications
— Reevaluates only changed conditions

CS 2740 Knowledge Representation M. Hauskrecht

Rete algorithm. Network.

add E
add D
A1) A(2) D2}
delete A
Rules: A(x)A B(x)A C(y) = add D(x)
AX)AB(y)AD(x)= add E(x)
A(x)A B(x)A E(z) = delete A(x)
Facts: A(1), 4(2), B(2), B(3), B(4),C(5)
CS 2740 Knowledge Representation M. Hauskrecht

Conflict resolution strategies

e Problem: Two or more rules are active at the same time.
Which one to execute next?

* Solutions:
— No duplication (do not execute the same rule twice)

— Recency. Rules referring to facts newly added to the
working memory take precedence
— Specificity. Rules that are more specific are preferred.

— Priority levels. Define priority of rules, actions based on
expert opinion. Have multiple priority levels such that the
higher priority rules fire first.

CS 2740 Knowledge Representation M. Hauskrecht

OPS-5

OPS5 (R1):

A production system — a programming language

* Used to build commercial expert systems like XCON for

configuration of the DEC computers

OPS/R2: (Production Systems Technologies inc.)

Support for forward and backward chaining
Improved Rete algorithm

Object oriented-rules (with inheritance)
Multiple WM

User-defined control

CS 2740 Knowledge Representation

M. Hauskrecht

OPS-5

System developed at CMU (as R1) and used extensively at DEC

(now owned by Compagq) to configure early Vax computers

Nearly 10,000 rules for several hundred component types

Major stimulus for commercial interest in rule-based expert systems

IF

the context 1s doing lavout and assigning a power supply

an sb1 module of any type has been put 1n a cabinet

the position of the sbi module 1s known

there 1s space available for the power supply

there is no available power supply

the voltage and the frequency of the components are known
THEN

add an appropriate power supply

*

CS 2740 Knowledge Representation

M. Hauskrecht

Frame-based representation

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

Many different ways of representing the same knowledge.
Representation may make inferences easier or more difficult.

Example:
* How to represent: “Car #12 is red.”
Solution 1: ?

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

Many different ways of representing the same knowledge.
Representation may make inferences easier or more difficult.

Example:
* How to represent: “Car #12 is red.”
Solution 1: Red(carl2).
— It’s easy to ask “What’s red?”
— But we can’t ask “what is the color of car12?”
Solution 2: ?

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

Many different ways of representing the same knowledge.
Representation may make inferences easier or more difficult.

Example:
* How to represent: “Car #12 is red.”
Solution 1: Red(carl2).
— It’s easy to ask “What’s red?”
— But we can’t ask “what is the color of car12?”
Solution 2: Color (carl2, red).
— It’s easy to ask “What’s red?”
— It’s easy to ask “What is the color of car12?”
— Can’t ask “What property of carl2 has value red?”
Solution 3: ?

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

Many different ways of representing the same knowledge.
Representation may make inferences easier or more difficult.

Example:

* How to represent: “Car #12 is red.”
Solution 1: Red(carl2).
— It’s easy to ask “What’s red?”
— But we can’t ask “what is the color of car12?”
Solution 2: Color (carl2, red).
— It’s easy to ask “What’s red?”
— It’s easy to ask “What is the color of car12?”
— Can’t ask “What property of carl2 has value red?”
Solution 3: Prop(carl12, color, red).
— It’s easy to ask all these questions.

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation

* Prop(Object, Property, Value)
» Called: object-property-value representation

* In FOL statements about the world, e.g. statements about
objects are scattered around

+ If we merge many properties of the object of the same type
into one structure we get the object-centered representation:

. Object
Prop(Object, Property1, Valuel)
Prop(Object, Property2, Value2) gﬁﬁiﬁﬁyy;
Prop(Object, Property-n, Value-n)
Property k

CS 2740 Knowledge Representation M. Hauskrecht

Object-centered representations

Objects: a natural way to organize the knowledge about
* physical objects:
— adesk has a surface-material, # of drawers, width, length, height, color,
procedure for unlocking, etc.
— some variations: no drawers, multi-level surface
e situations:

— aclass: room, participants, teacher, day, time, seating arrangement,
lighting, procedures for registering, grading, etc.

— leg of a trip: destination, origin, conveyance, procedures for buying

ticket, getting through customs, reserving hotel room, locating a car
rental etc.

Important: Objects enable grouping of procedures for determining the
properties of objects, their parts, interaction with parts

CS 2740 Knowledge Representation M. Hauskrecht

Frames

Predecessor of object-oriented systems

Two types of frames:
* individual frames

— represent a single object like a person, part of a trip
* generic frames

— represent categories of objects, like students

Example:
* A generic frame: Europian city
* Individual frames: Paris, London, Prague

CS 2740 Knowledge Representation M. Hauskrecht

Frames

* An individual frame is a named list of buckets called slots.
» What goes in the bucket is called a filler of the slot.
(frame-name
<slot-namel filler >
<slot-name? filler2 > ...)

CS 2740 Knowledge Representation M. Hauskrecht

Frames

Individual frames have a special slot called : INSTANCE-OF
whose filler is the name of a generic frame:
Example:
(toronto % lower case for individual frames
<:INSTANCE-OF CanadianCity>
<:Province ontario>
<:Population 4.5M>...)

Generic frames may have IS-A slot that includes generic frame
* (CanadianCity = % upper case for generic frames

<:IS-A City>

<:Province CanadianProvince>

<:Country canada>...)

CS 2740 Knowledge Representation M. Hauskrecht

Frames — inference control

Slots in generic frames can have associated procedures that are
executed and ‘control’ inference

Two types of procedures:

* IF-NEEDED procedure; executes when no slot filler is given
and the value is needed

(Table
<:Clearance [[F-NEEDED computeClearance]> ...)

* IF-ADDED procedure. If a slot filler is given its effect may
propagate to other frames (say to assure constraints)

(Lecture
<:DayOfWeek WeekDay>
<:Date [IF-ADDED computeDayOfWeek]> ...)
* the filler for :DayOfWeek will be calculated when :Date is filled

CS 2740 Knowledge Representation M. Hauskrecht

Frames — defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>...)
(city134
<:INSTANCE-OF CanadianCity>

)
* A country filler is:

CS 2740 Knowledge Representation M. Hauskrecht

Frames — defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>...)

(city134
<:INSTANCE-OF CanadianCity>
)

* A country filler is: canada

(city135
<:INSTANCE-OF CanadianCity>
<:Country holland>)

* A country filler is:

CS 2740 Knowledge Representation

M. Hauskrecht

Frames — defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>...)

(city134
<:INSTANCE-OF CanadianCity>
)

* A country filler is: canada

(city135
<:INSTANCE-OF CanadianCity>
<:Country holland>)

* A country filler is: holland

CS 2740 Knowledge Representation

M. Hauskrecht

Frames — inheritance

» Procedures and fillers of more general frame are applicable to more specific
frame through the inheritance mechanism

(CoffeeTable
<:IS-A Table> ...)
(MahoganyCoffeeTable
<:IS-A CoffeeTable> ...)

(Elephant
<:IS-A Mammal>
<:Colour gray> ...)
(RoyalElephant
<:IS-A Elephant>
<:Colour white>)
(clyde
<:INSTANCE-OF RoyalElephant>)

CS 2740 Knowledge Representation M. Hauskrecht

Frames — reasoning

Basic reasoning goes like this:

1. user instantiates a frame, i.e., declares that an object or situation
exists

slot fillers are inherited where possible

3. inherited IFFADDED procedures are run, causing more frames
to be instantiated and slots to be filled.

If the user or any procedure requires the filler of a slot then:
1. if there is a filler, it is used

2. otherwise, an inherited IF-NEEDED procedure is run,
potentially causing additional actions

CS 2740 Knowledge Representation M. Hauskrecht

Frames — reasoning

Global reasoning:

* make frames be major situations or object-types you need to
flesh out

» express constraints between slots as IFF-NEEDED and IF-
ADDED procedures

» fill in default values when known

CS 2740 Knowledge Representation M. Hauskrecht

Frames — example

A system to assist in travel planning

Basic frame types:

» aTrip - be a sequence of TravelSteps, linked through slots

» aTravelStep - terminates in a LodgingStay

» aLodgingStay linked to arriving and departing TravelStep(s)
» TravelSteps includes LodgingStays of their origin and

destination
r i (tripl7
}= *l—E <INSTANCE-OF Trip=
wpl? <:FirstStep travelStepl7a>
mavelSeplia mavelStepl T travelSepl e < Traveler ronB>..)
lodzingStay] Ta lodsmzStay 1 Th

CS 2740 Knowledge Representation M. Hauskrecht

Frames - examples

TravelSteps and LodgingStays share some properties (e.g.,
:BeginDate, :EndDate, :Cost, :PaymentMethod), so we might create a
more general category as the parent frame for both of them:

(Trip (TripPart
<:FirstStep TravelStep= =:BeginDate>
<:Traveler Person= <:EndDate>
<:BeginDate Date= <:Cost=
<:TotalCost Price= ...} <:PaymentMethod= ...)
(TravelStep (LodgingStay
<:IS-A TnpPart= <:IS-A TripPart>
<:Means= < Arnving TravelStep=
<:Origin= =:Destination= =:Departing TravelStep=
<:NextStep> <:PreviousStep:> <:City=
< DepartureTime> < ArmvalTime™ <:LodgingPlace> ...}

<:0riginLodgingStay=
<DestinationLodgingStay> ._)

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

Embellish frames with defaults and procedures

(TravelStep
<:Means amrplane= ..)

(TripPart
<:PaymentMethod wvisaCard> ..)
(TravelStep
<:Origin [IF-NEEDED {if no SELF:PreviousStep then newark}]=)
(Trip
< TotalCost Program notation {for an imaginary language):
[IF'NEEDED * EELF is the current frame being processed
{ xe~SELF FirstStep; v ifx refers to an individual frame, and y to a slot,
result—0; then xy refers to the filler of the slot
repeat
{ if exists x:NexiStep e this
then s O if there is
{ resulte—result + x:Cost + a— relodgingStay

1 DestinationLodgingStay: Cost;
xe—xNextStep |}
glse refurn result+x:Cost }}1]=)

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

(TravelStep
<:NextStep
[IF-ADDED
{if SELF:EndDate # SELF:NextStep:BeginDate
then
SELF:DestinationLodgingStay «—
SELF:NextStep:OniginLodgingStay «—
create new LodgingStay
with ‘BeginDate = SELF:EndDate
and with ‘EndDate = SELF:NextStep:BeginDate
and with :AmvingTravelStep = SELF
and with :DepartingTravelStep = SELF:NextStep
=
-

Note: default :City of LodgingStay, etc. can also be calculated:

(LodgingStay
=:City [IF-NEEDED {SELF:AmvingTravelStep:Destination}]...> ..}

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

Propose a trip to Toronto on Dec. 21, returning Dec. 22

(tripl38
<INSTANCE-OF Trip> the first thing to do is to create
~FirstStep travelStepl8a~) the trip and the first step
(travelStepl8a
<INSTANCE-OF TravelStep>
<:BeginDate 12/21/98>
<:EndDate 12/21/98> (travelStep18b
<:Means™ < INSTANCE-OF TravelStep>
<:Origin= = BeginDate 12/22/98>
<:Destination toronto= <:EndDate 12/22/98>
<:NextStep™> < PreviousStep> < Means>
<:DepartureTime™ < Arrival Time>) <:Origin toronto™
<:Destination™
< MNextStep=
< PreviousStep travelStepl8a>
the next thing to do is to create < DepartureTime™ < Arrival Time>)
the second step and link it to the first
by changing the NextStep ftravelStepl8a

< NextStep travel Stepl 8b>)

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

IF-ADDED on :NextStep then creates a LodgingStay:

travalStaplBz wnavslinplEh
i BaginDats 122158 ‘BoginDats 127055
FirstStap FndDar 127158 1 ‘EndDate 122288
Blsans

Mlsans
:Orign
I}q:r.n:::f);sm//
-

Previonsiup
DspartmwTims

Dng foress
R 20

ArrivalTime
(lodzmgStay18a Dustinationl sdgingSoy
< INSTANCE-OF LodzmeStay= Ceat
=:BegimDate 12/21/98>
=:EndDate 12/22/98=
=:Armvmg TravelStep travelStepl8a-
<:Departing Travel Step travelStepl 3h=
=:City=
=:LodgingFlace=)

If requested, IF-NEEDED can provide :City for lodgingStay18a (toronto)

which could then be overridden by hand, if necessary
(e.g. usually stay in North York, not Teronto)

Similarly, apply default for :Means and default calc for :Onigin

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

wplE
Fimeitep

3 aizplans
Crigiz newark

Mzezs airplans
Iﬁe:!inmicwmr/ Testination newark
NaxtSeap M

PraviousStep PraviousSisg
So far... B e teD0 -
Arrs 024

TestinaticolodgingStay
Cost 8321.00

B4

City moetEYock)
‘LodringPlacs nevesl
Cost E1M4.75

Finally, we can use :TotalCost IF-NEEDED procedure (see above)
to calculate the total cost of the trip:

= resulte— 0, xe—travelStepl8a, x:NextStep=travelStepl8b
« resulte—0+3$321.00+%124 75; x« travelStep18b, x:NextStep=NIL
- return: result=5445.75+$321.00 = $766.75

CS 2740 Knowledge Representation M. Hauskrecht

Using a frame-based system

Main purpose of the above:
» embellish a sketchy description with defaults, implied values
* maintain consistency
 use computed values to:
— allow derived properties to look explicit
— avoid up front, potentially unneeded computation

Application: Monitoring

hook to a DB, watch for changes in values

like an ES somewhat, but monitors are more object-centered,
inherited

CS 2740 Knowledge Representation M. Hauskrecht

Frames

Declarative vs procedural representation
— Frames allow both declarative and procedural control
* Inference is controled via procedures

— Can be very tightly controlled, much like an object
oriented programming

Differences from OOP:
— Frames control via: instantiate/ inherit/trigger cycles

— OOP: objects sending messages

CS 2740 Knowledge Representation M. Hauskrecht

