
1

CS 2740 Knowledge Representation M. Hauskrecht

CS 2740 Knowledge Representation
Lecture 11

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

I. Production systems.
II. Frame-based systems.

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge-based system

• Knowledge base:
– A set of sentences that describe the world in some formal

(representational) language (e.g. first-order logic)
– Domain specific knowledge

• Inference engine:
– A set of procedures that work upon the representational

language and can infer new facts or answer KB queries
(e.g. resolution algorithm, forward chaining)

– Domain independent

Knowledge base

Inference engine

2

CS 2740 Knowledge Representation M. Hauskrecht

Automated reasoning systems
• Theorem provers

– Prove sentences in the first-order logic. Use inference rules,
resolution rule and resolution refutation.

• Deductive retrieval systems
– Systems based on rules (KBs in Horn form)
– Prove theorems or infer new assertions

• Production systems
– Systems based on rules with actions in antecedents
– Forward chaining mode of operation

• Semantic networks
– Graphical representation of the world, objects are nodes in the

graphs, relations are various links
• Frames:

– object oriented representation, some procedural control of
inference

CS 2740 Knowledge Representation M. Hauskrecht

Production systems
Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:
• A Rule base (includes rules)
• A Working memory (includes facts)
Rules: a special type of if – then rule

Basic operation:
• Check if the antecedent of a rule is satisfied
• Decide which rule to execute (if more than one rule is satisfied)
• Execute actions in the consequent of the rule

kn aaappp ,,, 2121 KK ⇒∧∧
Antecedent:

A conjunction of conditions
Consequent:

a sequence of actions

3

CS 2740 Knowledge Representation M. Hauskrecht

Working memory
• Consists of a set of facts – statements about the world but also

can represent various data structures
• The exact syntax and representation of facts may differ across

different systems
• Examples:

– predicates
– such as Red(car12)
– but only ground statements
or
– (type attr1:value1 attr2:value2 …) objects

such as: (person age 27 home Toronto)
The type, attributes and values are all atoms

CS 2740 Knowledge Representation M. Hauskrecht

Rules

• Antecedents: conjunctions of conditions
• Examples:

– a conjunction of literals
– simple negated or non-negated statements in predicate logic

• or
– conjunctions of conditions on objects/object
– (type attr1 spec1 attr2 spec2 …)
– Where specs can be an atom, a variable, expression, condition

(person age [n+4] occupation x)
(person age {< 23 ∧ > 6})

kn aaappp ,,, 2121 KK ⇒∧∧

)()()(yCxBxA ∧∧

4

CS 2740 Knowledge Representation M. Hauskrecht

Production systems

• Consequent: a sequence of actions
• An action can be:

– ADD the fact to the working memory (WM)
– REMOVE the fact from the WM
– MODIFY an attribute field
– QUERY the user for input, etc …

• Examples:

• Or
(Student name x) ⇒ ADD (Person name x)

kn aaappp ,,, 2121 KK ⇒∧∧

)()()()(xDaddyCxBxA ⇒∧∧

CS 2740 Knowledge Representation M. Hauskrecht

Production systems
• Use forward chaining to do reasoning:

– If the antecedent of the rule is satisfied (rule is said to be
“active”) then its consequent can be executed (it is “fired”)

• Problem: Two or more rules are active at the same time.
Which one to execute next?

• Strategy for selecting the rule to be fired from among possible
candidates is called conflict resolution

R27

R105

Conditions R27

Conditions R105

Actions R27

Actions R105
?

5

CS 2740 Knowledge Representation M. Hauskrecht

Production systems
• Why is conflict resolution important? Or, Why do we care

about the order?
• Assume that we have two rules and the preconditions of both

are satisfied:

• What can happen if rules are triggered in different order?

)()()()(xDaddyCxBxA ⇒∧∧

)()()()(xAdeletezExBxA ⇒∧∧

R1:

R2:

CS 2740 Knowledge Representation M. Hauskrecht

Production systems
• Why is conflict resolution important? Or, Why do we care

about the order?
• Assume that we have two rules and the preconditions of both

are satisfied:

• What can happen if rules are triggered in different order?
– If R1 goes first, R2 condition is still satisfied and we infer

D(x)
– If R2 goes first we may never infer D(x)

)()()()(xDaddyCxBxA ⇒∧∧

)()()()(xAdeletezExBxA ⇒∧∧

R1:

R2:

6

CS 2740 Knowledge Representation M. Hauskrecht

Production systems

• Problems with production systems:
– Additions and Deletions can change a set of active rules;
– If a rule contains variables testing all instances in which the

rule is active may require a large number of unifications.
– Conditions of many rules may overlap, thus requiring to

repeat the same unifications multiple times.
• Solution: Rete algorithm

– gives more efficient solution for managing a set of active
rules and performing unifications

– Implemented in the system OPS-5 (used to implement
XCON – an expert system for configuration of DEC
computers)

CS 2740 Knowledge Representation M. Hauskrecht

Rete algorithm

• Assume a set of rules:

• And facts:

• Rete:
– Compiles the rules to a network that merges conditions of

multiple rules together (avoid repeats)
– Propagates valid unifications
– Reevaluates only changed conditions

)()()()(xDaddyCxBxA ⇒∧∧

)()()()(xEaddxDyBxA ⇒∧∧
)()()()(xAdeletezExBxA ⇒∧∧

)5(),4(),3(),2(),2(),1(CBBBAA

7

CS 2740 Knowledge Representation M. Hauskrecht

Rete algorithm. Network.

)()()()(xDaddyCxBxA ⇒∧∧

)()()()(xEaddxDyBxA ⇒∧∧
)()()()(xAdeletezExBxA ⇒∧∧

)5(),4(),3(),2(),2(),1(CBBBAA

Rules:

Facts:

CS 2740 Knowledge Representation M. Hauskrecht

Conflict resolution strategies

• Problem: Two or more rules are active at the same time.
Which one to execute next?

• Solutions:
– No duplication (do not execute the same rule twice)
– Recency. Rules referring to facts newly added to the

working memory take precedence
– Specificity. Rules that are more specific are preferred.
– Priority levels. Define priority of rules, actions based on

expert opinion. Have multiple priority levels such that the
higher priority rules fire first.

8

CS 2740 Knowledge Representation M. Hauskrecht

OPS-5

OPS5 (R1):
• A production system – a programming language
• Used to build commercial expert systems like XCON for

configuration of the DEC computers

OPS/R2: (Production Systems Technologies inc.)
• Support for forward and backward chaining
• Improved Rete algorithm
• Object oriented-rules (with inheritance)
• Multiple WM
• User-defined control

CS 2740 Knowledge Representation M. Hauskrecht

OPS-5

•

9

CS 2740 Knowledge Representation M. Hauskrecht

Frame-based representation

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge.

Representation may make inferences easier or more difficult.
Example:
• How to represent: “Car #12 is red.”

Solution 1: ?

10

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge.

Representation may make inferences easier or more difficult.
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12).
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: ?

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge.

Representation may make inferences easier or more difficult.
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12).
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: Color (car12, red).
– It’s easy to ask “What’s red?”
– It’s easy to ask “What is the color of car12?”
– Can’t ask “What property of car12 has value red?”
Solution 3: ?

11

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge.

Representation may make inferences easier or more difficult.
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12).
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: Color (car12, red).
– It’s easy to ask “What’s red?”
– It’s easy to ask “What is the color of car12?”
– Can’t ask “What property of car12 has value red?”
Solution 3: Prop(car12, color , red).
– It’s easy to ask all these questions.

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
• Prop(Object, Property, Value)
• Called: object-property-value representation
• In FOL statements about the world, e.g. statements about

objects are scattered around
• If we merge many properties of the object of the same type

into one structure we get the object-centered representation:

Prop(Object, Property1, Value1)
Prop(Object, Property2, Value2)
…
Prop(Object, Property-n, Value-n)

Object

Property 1
Property 2

Property k

12

CS 2740 Knowledge Representation M. Hauskrecht

Object-centered representations

Objects: a natural way to organize the knowledge about
• physical objects:

– a desk has a surface-material, # of drawers, width, length, height, color,
procedure for unlocking, etc.

– some variations: no drawers, multi-level surface
• situations:

– a class: room, participants, teacher, day, time, seating arrangement,
lighting, procedures for registering, grading, etc.

– leg of a trip: destination, origin, conveyance, procedures for buying
ticket, getting through customs, reserving hotel room, locating a car
rental etc.

Important: Objects enable grouping of procedures for determining the
properties of objects, their parts, interaction with parts

CS 2740 Knowledge Representation M. Hauskrecht

Frames

Predecessor of object-oriented systems

Two types of frames:
• individual frames

– represent a single object like a person, part of a trip
• generic frames

– represent categories of objects, like students

Example:
• A generic frame: Europian city
• Individual frames: Paris, London, Prague

13

CS 2740 Knowledge Representation M. Hauskrecht

Frames

• An individual frame is a named list of buckets called slots.
• What goes in the bucket is called a filler of the slot.

(frame-name
<slot-name1 filler1>
<slot-name2 filler2 > …)

CS 2740 Knowledge Representation M. Hauskrecht

Frames
Individual frames have a special slot called : INSTANCE-OF

whose filler is the name of a generic frame:
Example:

(toronto % lower case for individual frames
<:INSTANCE-OF CanadianCity>
<:Province ontario>
<:Population 4.5M>…)

Generic frames may have IS-A slot that includes generic frame
• (CanadianCity % upper case for generic frames

<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

14

CS 2740 Knowledge Representation M. Hauskrecht

Frames – inference control

Slots in generic frames can have associated procedures that are
executed and ‘control’ inference

Two types of procedures:
• IF-NEEDED procedure; executes when no slot filler is given

and the value is needed
(Table

<:Clearance [IF-NEEDED computeClearance]> …)
• IF-ADDED procedure. If a slot filler is given its effect may

propagate to other frames (say to assure constraints)
(Lecture

<:DayOfWeek WeekDay>
<:Date [IF-ADDED computeDayOfWeek]> …)

• the filler for :DayOfWeek will be calculated when :Date is filled

CS 2740 Knowledge Representation M. Hauskrecht

Frames – defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is:

15

CS 2740 Knowledge Representation M. Hauskrecht

Frames – defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is: canada
(city135

<:INSTANCE-OF CanadianCity>
<:Country holland>)

• A country filler is:

CS 2740 Knowledge Representation M. Hauskrecht

Frames – defaults

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is: canada
(city135

<:INSTANCE-OF CanadianCity>
<:Country holland>)

• A country filler is: holland

16

CS 2740 Knowledge Representation M. Hauskrecht

Frames – inheritance

• Procedures and fillers of more general frame are applicable to more specific
frame through the inheritance mechanism
(CoffeeTable

<:IS-A Table> ...)
(MahoganyCoffeeTable

<:IS-A CoffeeTable> ...)

(Elephant
<:IS-A Mammal>
<:Colour gray> ...)

(RoyalElephant
<:IS-A Elephant>
<:Colour white>)

(clyde
<:INSTANCE-OF RoyalElephant>)

CS 2740 Knowledge Representation M. Hauskrecht

Frames – reasoning

Basic reasoning goes like this:
1. user instantiates a frame, i.e., declares that an object or situation

exists
2. slot fillers are inherited where possible
3. inherited IF-ADDED procedures are run, causing more frames

to be instantiated and slots to be filled.

If the user or any procedure requires the filler of a slot then:
1. if there is a filler, it is used
2. otherwise, an inherited IF-NEEDED procedure is run,

potentially causing additional actions

17

CS 2740 Knowledge Representation M. Hauskrecht

Frames – reasoning

Global reasoning:
• make frames be major situations or object-types you need to

flesh out
• express constraints between slots as IF-NEEDED and IF-

ADDED procedures
• fill in default values when known

CS 2740 Knowledge Representation M. Hauskrecht

Frames – example
A system to assist in travel planning
Basic frame types:
• a Trip - be a sequence of TravelSteps, linked through slots
• a TravelStep - terminates in a LodgingStay
• a LodgingStay linked to arriving and departing TravelStep(s)
• TravelSteps includes LodgingStays of their origin and

destination

18

CS 2740 Knowledge Representation M. Hauskrecht

Frames - examples

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

19

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

20

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

CS 2740 Knowledge Representation M. Hauskrecht

Frames - example

21

CS 2740 Knowledge Representation M. Hauskrecht

Using a frame-based system
Main purpose of the above:
• embellish a sketchy description with defaults, implied values
• maintain consistency
• use computed values to:

– allow derived properties to look explicit
– avoid up front, potentially unneeded computation

Application: Monitoring
• hook to a DB, watch for changes in values
• like an ES somewhat, but monitors are more object-centered,

inherited

CS 2740 Knowledge Representation M. Hauskrecht

Frames

• Declarative vs procedural representation
– Frames allow both declarative and procedural control

• Inference is controled via procedures
– Can be very tightly controlled, much like an object

oriented programming

• Differences from OOP:
– Frames control via: instantiate/ inherit/trigger cycles
– OOP: objects sending messages

