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I. Production systems.
II. Frame-based systems.   
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Knowledge-based system

• Knowledge base:
– A set of sentences that describe the world in some formal 

(representational) language (e.g. first-order logic)
– Domain specific knowledge

• Inference engine:
– A set of procedures that work upon the representational 

language and can infer new facts or answer KB queries 
(e.g. resolution algorithm, forward chaining)

– Domain independent

Knowledge base

Inference engine
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Automated reasoning systems
• Theorem provers

– Prove sentences in the first-order logic. Use inference rules, 
resolution rule and resolution refutation. 

• Deductive retrieval systems
– Systems based on rules (KBs in Horn form)
– Prove theorems or infer new assertions  

• Production systems
– Systems based on rules with actions in antecedents
– Forward chaining mode of operation

• Semantic networks 
– Graphical representation of the world, objects are nodes in the 

graphs, relations are various links
• Frames: 

– object oriented representation, some procedural control of 
inference
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Production systems
Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:
• A Rule base (includes rules)
• A Working memory (includes facts)
Rules: a special type of if – then rule

Basic operation:
• Check if the antecedent of a rule is satisfied
• Decide which rule to execute (if more than one rule is satisfied) 
• Execute actions in the consequent of the rule

kn aaappp ,,, 2121 KK ⇒∧∧
Antecedent:

A conjunction of conditions
Consequent: 

a sequence of actions
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Working memory
• Consists of a set of facts – statements about the world but also 

can represent various data structures
• The exact syntax and representation of facts may differ across 

different systems
• Examples: 

– predicates
– such as Red(car12)
– but only ground statements 
or
– (type attr1:value1 attr2:value2 …) objects

such as:  (person age 27 home Toronto) 
The type, attributes and values are all atoms
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Rules

• Antecedents: conjunctions of conditions
• Examples: 

– a conjunction of literals  
– simple negated or non-negated statements in predicate logic

• or 
– conjunctions of conditions on objects/object
– (type attr1 spec1  attr2 spec2 …)
– Where specs can be an atom, a variable, expression, condition

(person age [n+4] occupation x)
(person age {< 23 ∧ > 6})

kn aaappp ,,, 2121 KK ⇒∧∧

)()()( yCxBxA ∧∧
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Production systems

• Consequent: a sequence of actions 
• An action can be:

– ADD the fact to the working memory (WM)
– REMOVE the fact from the WM
– MODIFY an attribute field       
– QUERY the user for input, etc …

• Examples: 

• Or 
(Student name x)  ⇒ ADD (Person name x)

kn aaappp ,,, 2121 KK ⇒∧∧

)()()()( xDaddyCxBxA ⇒∧∧
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Production systems
• Use forward chaining to do reasoning:

– If the antecedent of the rule is satisfied (rule is said to be 
“active”) then its consequent can be executed (it is “fired”)

• Problem: Two or more rules are active at the same time. 
Which one to execute next?

• Strategy for selecting the rule to be fired from among possible 
candidates is called conflict  resolution

R27

R105

Conditions R27

Conditions R105

Actions R27

Actions R105
?
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Production systems
• Why is conflict resolution important? Or, Why do we care 

about the order? 
• Assume that we have two rules and the preconditions of both 

are satisfied:

• What can happen if rules are triggered in different order?

)()()()( xDaddyCxBxA ⇒∧∧

)()()()( xAdeletezExBxA ⇒∧∧

R1:

R2:
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Production systems
• Why is conflict resolution important? Or, Why do we care 

about the order? 
• Assume that we have two rules and the preconditions of both 

are satisfied:

• What can happen if rules are triggered in different order?
– If R1 goes first, R2 condition is still satisfied and we infer  

D(x)
– If R2 goes first we may never infer D(x)

)()()()( xDaddyCxBxA ⇒∧∧

)()()()( xAdeletezExBxA ⇒∧∧

R1:

R2:
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Production systems

• Problems with production systems:
– Additions and Deletions can change a set of active rules;
– If a rule contains variables testing all instances in which the 

rule is active may  require a large number of unifications.
– Conditions of many rules may overlap, thus requiring to 

repeat the same unifications multiple times. 
• Solution: Rete algorithm

– gives more efficient solution for managing a set of active 
rules and performing unifications

– Implemented in the system OPS-5 (used to implement 
XCON – an expert system for configuration of DEC 
computers)
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Rete algorithm

• Assume a set of rules:

• And facts:

• Rete:
– Compiles the rules to a network that merges conditions of 

multiple rules together (avoid repeats)
– Propagates valid unifications
– Reevaluates only changed conditions

)()()()( xDaddyCxBxA ⇒∧∧

)()()()( xEaddxDyBxA ⇒∧∧
)()()()( xAdeletezExBxA ⇒∧∧

)5(),4(),3(),2(),2(),1( CBBBAA
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Rete algorithm. Network.

)()()()( xDaddyCxBxA ⇒∧∧

)()()()( xEaddxDyBxA ⇒∧∧
)()()()( xAdeletezExBxA ⇒∧∧

)5(),4(),3(),2(),2(),1( CBBBAA

Rules:

Facts:
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Conflict resolution strategies 

• Problem: Two or more rules are active at the same time. 
Which one to execute next?

• Solutions:
– No duplication (do not execute the same rule twice)
– Recency. Rules referring to facts newly added to the 

working memory take precedence
– Specificity. Rules that are more specific are preferred.
– Priority levels. Define priority of rules, actions based on 

expert opinion. Have multiple priority levels such that the 
higher priority rules fire first.
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OPS-5 

OPS5 (R1):
• A production system – a programming language
• Used to build commercial expert systems like XCON for 

configuration of the DEC computers

OPS/R2: (Production Systems Technologies inc.)
• Support for forward and backward chaining
• Improved Rete algorithm
• Object oriented-rules (with inheritance)
• Multiple WM
• User-defined control 
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OPS-5

•
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Frame-based representation  
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Knowledge representation
Many different ways of representing the same knowledge. 

Representation may make inferences easier or more difficult. 
Example:
• How to represent: “Car #12 is red.”

Solution 1: ?



10

CS 2740 Knowledge Representation M. Hauskrecht

Knowledge representation
Many different ways of representing the same knowledge. 

Representation may make inferences easier or more difficult. 
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12). 
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: ?
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Knowledge representation
Many different ways of representing the same knowledge. 

Representation may make inferences easier or more difficult. 
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12). 
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: Color (car12, red). 
– It’s easy to ask “What’s red?”
– It’s easy to ask “What is the color of car12?”
– Can’t ask “What property of car12 has value red?”
Solution 3: ?
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Knowledge representation
Many different ways of representing the same knowledge. 

Representation may make inferences easier or more difficult. 
Example:
• How to represent: “Car #12 is red.”

Solution 1: Red(car12). 
– It’s easy to ask “What’s red?”
– But we can’t ask “what is the color of car12?”
Solution 2: Color (car12, red). 
– It’s easy to ask “What’s red?”
– It’s easy to ask “What is the color of car12?”
– Can’t ask “What property of car12 has value red?”
Solution 3: Prop(car12, color , red). 
– It’s easy to ask all these questions.
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Knowledge representation
• Prop(Object, Property, Value)
• Called: object-property-value representation 
• In FOL statements about the world, e.g. statements about 

objects are scattered around
• If we merge many properties of the object of the same type 

into one structure we get the object-centered representation: 

Prop(Object, Property1, Value1)
Prop(Object, Property2, Value2)
…
Prop(Object, Property-n, Value-n)

Object

Property 1
Property 2

Property k
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Object-centered representations 

Objects: a natural way to organize the knowledge  about
• physical objects:

– a desk has a surface-material, # of drawers, width, length, height, color, 
procedure for unlocking, etc.

– some variations: no drawers, multi-level surface
• situations:

– a class: room, participants, teacher, day, time, seating arrangement, 
lighting, procedures for registering, grading, etc.

– leg of a trip: destination, origin, conveyance, procedures for buying 
ticket, getting through customs, reserving hotel room, locating a car 
rental etc.

Important: Objects enable grouping of procedures for determining the 
properties of objects, their parts, interaction with parts
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Frames

Predecessor of object-oriented systems

Two types of frames:
• individual frames

– represent a single object like a person, part of a trip
• generic frames

– represent categories of objects, like students

Example:
• A generic frame: Europian city
• Individual frames: Paris, London, Prague
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Frames

• An individual frame is a named list of buckets called slots. 
• What goes in the bucket is called a filler of the slot.

(frame-name
<slot-name1 filler1>
<slot-name2 filler2 > …)
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Frames
Individual frames have a special slot called : INSTANCE-OF

whose filler is the name of a generic frame:
Example:

(toronto % lower case for individual frames
<:INSTANCE-OF CanadianCity>
<:Province ontario>
<:Population 4.5M>…)

Generic frames may have IS-A slot that includes generic frame
• (CanadianCity % upper case for generic frames

<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)
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Frames – inference control 

Slots in generic frames can have associated procedures that are 
executed and ‘control’ inference

Two types of procedures: 
• IF-NEEDED procedure; executes when no slot filler is given 

and the value is needed 
(Table

<:Clearance [IF-NEEDED computeClearance]> …)
• IF-ADDED procedure. If a slot filler is given its effect may 

propagate to other frames (say to assure constraints) 
(Lecture

<:DayOfWeek WeekDay>
<:Date [IF-ADDED computeDayOfWeek]> …)

• the filler for :DayOfWeek will be calculated when :Date is filled
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Frames – defaults 

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is:
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Frames – defaults 

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is:  canada
(city135

<:INSTANCE-OF CanadianCity>
<:Country holland>)

• A country filler is: 
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Frames – defaults 

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

(city134
<:INSTANCE-OF CanadianCity>
..)

• A country filler is:  canada
(city135

<:INSTANCE-OF CanadianCity>
<:Country holland>)

• A country filler is: holland



16

CS 2740 Knowledge Representation M. Hauskrecht

Frames – inheritance 

• Procedures and fillers of more general frame are applicable to more specific 
frame through the inheritance mechanism
(CoffeeTable

<:IS-A Table> ...)
(MahoganyCoffeeTable

<:IS-A CoffeeTable> ...)

(Elephant
<:IS-A Mammal>
<:Colour gray> ...)

(RoyalElephant
<:IS-A Elephant>
<:Colour white>)

(clyde
<:INSTANCE-OF RoyalElephant>)
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Frames – reasoning 

Basic reasoning goes like this:
1. user instantiates a frame, i.e., declares that an object or situation 

exists
2. slot fillers are inherited where possible
3. inherited IF-ADDED procedures are run, causing more frames 

to be instantiated and slots to be filled.

If the user or any procedure requires the filler of a slot then:
1. if there is a filler, it is used
2. otherwise, an inherited IF-NEEDED procedure is run, 

potentially causing additional actions
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Frames – reasoning 

Global reasoning:
• make frames be major situations or object-types you need to 

flesh out
• express constraints between slots as IF-NEEDED and IF-

ADDED procedures
• fill in default values when known
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Frames – example 
A system to assist in travel planning
Basic frame types:
• a Trip - be a sequence of TravelSteps, linked through slots
• a TravelStep - terminates in a LodgingStay
• a LodgingStay linked to arriving and departing TravelStep(s)
• TravelSteps includes LodgingStays of their origin and 

destination
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Frames - examples
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Frames - example
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Frames - example
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Frames - example
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Frames - example
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Frames - example
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Using a frame-based system
Main purpose of the above: 
• embellish a sketchy description with defaults, implied values
• maintain consistency
• use computed values to:

– allow derived properties to look explicit
– avoid up front, potentially unneeded computation

Application: Monitoring
• hook to a DB, watch for changes in values
• like an ES somewhat, but monitors are more object-centered, 

inherited
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Frames

• Declarative vs procedural representation
– Frames allow both declarative and procedural control 

• Inference is controled via procedures
– Can be very tightly controlled, much like an object 

oriented programming

• Differences from OOP:
– Frames control via: instantiate/ inherit/trigger cycles
– OOP: objects sending messages


