Problem assignment 6

Due: Wednesday, November 12, 2008

Probability theory

Problem 1

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be random variables. A and B have two possible values T, F and C has three values: high, medium, low. The full joint distribution is defined by the following contingency table.

$\mathrm{C} /(\mathrm{A}, \mathrm{B})$	(T T)	(T F)	(F T)	(F F)
high	0.02	0.08	0.03	0.12
medium	0.1	0.1	0.05	0.15
low	0.05	0.05	0.15	0.1

Calculate the following probability distributions:

- Part a. $\mathbf{P}(\mathbf{A}, \mathbf{B})$.
- Part b. $\mathbf{P}(\mathbf{A}, \mathbf{C})$.
- Part c. $\mathbf{P}(\mathbf{B})$.
- Part d. $\mathbf{P}(\mathbf{A}, \mathbf{B} \mid \mathbf{C}=$ medium $)$.
- Part e. $\mathbf{P}(\mathbf{A} \mid \mathbf{B}=\mathbf{T}, \mathbf{C}=$ high $)$.

Problem 2

Random variables A,B are conditionally independent given C when:

$$
P(A, B \mid C)=P(A \mid C) P(B \mid C) .
$$

Prove that this implies:

$$
P(A \mid B, C)=P(A \mid C) .
$$

Problem 3

The probability it rains or snows in Boston is 0.1 . The probability that the traffic on I-93 (an interstate passing through Boston) is slow during precipitation is 0.8 . The probability the traffic is slow during normal weather (no rain or snow) is 0.3 . Compute the probability of an actual weather pattern in Boston given the traffic on I-93 is slow.

