Solutions to problem set 4

Problem 1. Unification

See example solution on the course web site.

Problem 2. Inference in FOL

Let L be a first-order language that contains the predicates, $\mathrm{A}(\mathrm{x}), \mathrm{C}(\mathrm{x}), \mathrm{D}(\mathrm{x})$, to say x is an animal, cat, and dog, respectively, and $\mathrm{L}(\mathrm{x} ; \mathrm{y})$ and $\mathrm{F}(\mathrm{x} ; \mathrm{y})$, to say x loves y and y is a friend of x, respectively.

Part a. Translate the following knowledge base into the FOL.

1. Cats and dogs are animals.

Translation: $\forall x(C(x) \rightarrow A(x)) \wedge(D(x) \rightarrow A(x))$
2. Everyone loves either a cat or a dog.

Translation: $\forall y \exists z(C(z) \vee D(z)) \wedge L(y, z)$
3. Anyone who loves an animal has a friend.

Translation: $\forall u(\exists v L(u, v) \wedge A(v)) \rightarrow \exists t F(u, t)$
4. Everyone has a friend.

Translation: $\forall x \exists y F(x, y)$

Part b. Convert these formulas into normal form, negating the last beforehand.

- $\forall x(C(x) \rightarrow A(x)) \wedge \forall x(D(x) \rightarrow A(x))$ $(\neg C(x) \vee A(x)) \wedge(\neg D(q) \vee A(q))$
- $\forall y \exists z(C(z) \vee D(z)) \wedge L(y, z)$ $\left[C\left(f_{1}(y)\right) \vee D\left(f_{1}(y)\right)\right] \wedge L\left(y, f_{1}(y)\right)$, where $f_{1}(y)$ is a Skolem function
- $\forall u(\exists v L(u, v) \wedge A(v)) \rightarrow \exists t F(u, t)$
$\left(\neg L(u, v) \vee \neg A(v) \vee F\left(u, f_{2}(u)\right)\right.$, where $f_{2}(u)$ is a Skolem function
- $\neg \forall x \exists y F(x, y)$
$\neg F(K, w)$, where K is a Skolem constant

Part c. Prove that everyone has a friend (sentence 4) follows from sentences 1,2 and 3 , using generalized resolution and proof-by-refutation.

- 1. $\neg C(x) \vee A(x)$
- 2. $\neg D(q) \vee A(q)$
- 3. $C\left(f_{1}(y)\right) \vee D\left(f_{1}(y)\right)$
- 4. $L\left(y, f_{1}(y)\right)$
- 5. $\neg L(u, v) \vee \neg A(v) \vee F\left(u, f_{2}(u)\right)$
- 6. $\neg F(K, w)$
- 7. $\neg L(K, v) \vee \neg A(v)$ from $5 \& 6\left(u / K, w / f_{2}(K)\right)$
- 8. $\neg A\left(f_{1}(K)\right)$ from $7 \& 8\left(y / K, v / f_{1}(K)\right)$
- 9. $\neg C\left(f_{1}(K)\right)$ from $8 \& 1\left(x / f_{1}(K)\right)$
- 10. $\neg D\left(f_{1}(K)\right)$ from $8 \& 2\left(q / f_{1}(K)\right)$
- 11. $D\left(f_{1}(K)\right)$ from $9 \& 3(y / K)$
- 12. contradiction, from $10 \& 11$

