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Speech and Language 
Processing

Chapter 12
Constituency Parsing
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Today

 Parsing with CFGs
 Bottom-up, top-down
 Ambiguity
 CKY parsing
 (Earley)
 Shallow
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Parsing

 Parsing with CFGs refers to the task of 
assigning proper trees to input strings
 Proper here means a tree that covers all 

and only the elements of the input and 
has an S at the top
 It doesn’t actually mean that the system 

can select the correct tree from among all 
the possible trees
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Parsing

 As with everything of interest, parsing 
involves a search which involves the 
making of choices
 We’ll start with some basic (meaning bad) 

methods before moving on to the one that 
you need to know 
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For Now

 Assume…
 You have all the words already in some buffer
 The input isn’t POS tagged
 We won’t worry about morphological analysis
 All the words are known

 These are all problematic in various ways, 
and would have to be addressed in real 
applications.
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Top-Down Search

 Since we’re trying to find trees rooted with 
an S (Sentences), why not start with the 
rules that give us an S.
 Then we can work our way down from 

there to the words.
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Top Down Space
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Bottom-Up Parsing

 Of course, we also want trees that cover 
the input words. So we might also start 
with trees that link up with the words in 
the right way.
 Then work your way up from there to 

larger and larger trees.
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Bottom-Up Search
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Bottom-Up Search



6

9/25/2019 Speech and Language Processing - Jurafsky and Martin       11

Bottom-Up Search
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Bottom-Up Search 
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Bottom-Up Search
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Top-Down and Bottom-Up

 Top-down
 Only searches for trees that can be answers 

(i.e. S’s)
 But also suggests trees that are not consistent 

with any of the words
 Bottom-up
 Only forms trees consistent with the words
 But suggests trees that make no sense 

globally
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Control

 Of course, in both cases we left out how 
to keep track of the search space and how 
to make choices
 Which node to try to expand next
 Which grammar rule to use to expand a node

 One approach is called backtracking.
 Make a choice, if it works out then fine
 If not then back up and make a different 

choice
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Problems

 Even with the best filtering, backtracking 
methods are doomed because of two 
inter-related problems
 Ambiguity
 Shared subproblems
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Ambiguity

Example types of ambiguity

 POS
 Attachment
 PP
 Coordination (old dogs and cats)
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Shared Sub-Problems

 No matter what kind of search (top-down 
or bottom-up or mixed) that we choose.
 We don’t want to redo work we’ve already 

done.
 Unfortunately, naïve backtracking will lead to 

duplicated work.

Review

 Formal Grammars
 CFG – what, why, why not?
 Dependency
 Treebanks

 Parsing with CFGs
 Bottom-up, top-down
 Ambiguity
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S  NP VP VP  V

S  Aux NP VP VP -> V PP

S -> VP PP -> Prep NP

NP  Det Nom N  old | dog | footsteps | young

NP  PropN V  dog | eat | sleep | bark | meow

Nom -> Adj N Aux  does | can

Nom  N Prep from | to | on | of

Nom  N Nom PropN  Fido | Felix

Nom  Nom PP Det  that |  this | a | the

VP  V NP Adj -> old | happy| young 

“The old dog the footsteps of 
the young.”
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Shared Sub-Problems

 Consider
 A flight from Indianapolis to Houston on TWA
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Shared Sub-Problems

 Assume a top-down parse making choices 
among the various Nominal rules.
 In particular, between these two
 Nominal -> Noun
 Nominal -> Nominal PP

 Statically choosing the rules in this order 
leads to the following bad results...
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Shared Sub-Problems



13

9/25/2019 Speech and Language Processing - Jurafsky and Martin       25

Shared Sub-Problems
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Shared Sub-Problems
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Shared Sub-Problems
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Dynamic Programming
 DP search methods fill tables with partial results 

and thereby
 Avoid doing avoidable repeated work
 Solve exponential problems in polynomial time
 Efficiently store ambiguous structures with shared 

sub-parts.
 Two approaches roughly correspond to bottom-

up and top-down approaches.
 CKY
 Earley
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CKY Parsing

 First we’ll limit our grammar to epsilon-
free, binary rules (more later)
 Consider the rule A   BC
 If there is an A somewhere in the input 

then there must be a B followed by a C in 
the input.
 If the A spans from i to j in the input then 

there must be some k st. i<k<j
 Ie. The B splits from the C someplace.
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Problem
 What if your grammar isn’t binary?
 As in the case of the TreeBank grammar?

 Convert it to binary… any arbitrary CFG 
can be rewritten into Chomsky-Normal 
Form automatically.
 What does this mean?
 The resulting grammar accepts (and rejects) the 

same set of strings as the original grammar.
 But the resulting derivations (trees) are different.
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Problem

 More specifically, we want our rules to be 
of the form
A  B C
Or
A  w

That is, rules can expand to either 2 non-
terminals or to a single terminal.
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Binarization Intuition

 Eliminate chains of unit productions.
 Introduce new intermediate non-terminals 

into the grammar that distribute rules 
with length > 2 over several rules. 
 So… S  A B C turns into 
S  X C and
X  A B
Where X is a symbol that doesn’t occur 

anywhere else in the the grammar.
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Sample L1 Grammar
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CNF Conversion
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CKY

 So let’s build a table so that an A spanning 
from i to j in the input is placed in cell [i,j]
in the table.
 So a non-terminal spanning an entire 

string will sit in cell [0, n]
 Hopefully an S

 If we build the table bottom-up, we’ll 
know that the parts of the A must go from 
i to k and from k to j, for some k.
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CKY

 Meaning that for a rule like A  B C we 
should look for a B in [i,k] and a C in [k,j].
 In other words, if we think there might be 

an A spanning i,j in the input… AND 
A  B C is a rule in the grammar THEN

 There must be a B in [i,k] and a C in [k,j]
for some i<k<j
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CKY

 So to fill the table loop over the cell[i,j] 
values in some systematic way
 What constraint should we put on that 

systematic search?

 For each cell, loop over the appropriate k 
values to search for things to add.
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Note

 We arranged the loops to fill the table a 
column at a time, from left to right, 
bottom to top. 
 This assures us that whenever we’re filling a 

cell, the parts needed to fill it are already in 
the table (to the left and below)
 It’s somewhat natural in that it processes the 

input a left to right a word at a time
 Known as online



20

9/25/2019 Speech and Language Processing - Jurafsky and Martin       39

Example

CKY Parser

40

Book       the        flight    through  Houston

i=
0

1

2

3

4

j= 1           2              3             4              5

Cell[i,j]
contains all
constituents
(non-terminals)
covering words
i +1 through j
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CKY Parser

41

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

CKY Parser

42

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP
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CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

S

VP, 
X2
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CKY Parser

45

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP
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CKY Parser

47

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP
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CKY Parser

49

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

S
VP
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CKY Parser

51

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

CKY Parser

52

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S
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CKY Parser

53

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S

X2 
S

CKY Parser
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Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S Parse 
Tree
#1
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CKY Parser

55

Book       the        flight    through  Houston

S, VP, Verb,
Nominal,
Noun

Det

Nominal,
Noun

None

NP

VP

S

Prep

None

None

None

NP
ProperNoun

PP

Nominal

NP

VP
S
VP

S Parse 
Tree
#2
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Example

Filling column 5
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Example
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Example
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Example
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Example
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CKY Notes

 Since it’s bottom up, CKY populates the 
table with a lot of phantom constituents.
 Segments that by themselves are constituents 

but cannot really occur in the context in which 
they are being suggested.
 To avoid this we can switch to a top-down 

control strategy
 Or we can add some kind of filtering that 

blocks constituents where they can not 
happen in a final analysis.
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Earley Parsing

 Allows arbitrary CFGs
 Top-down control
 Fills a table in a single sweep over the 

input
 Table is length N+1; N is number of words
 Table entries represent
 Completed constituents and their locations
 In-progress constituents
 Predicted constituents
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Back to Ambiguity

 Did we solve it?
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Ambiguity

 No…
 Both CKY and Earley will result in multiple S

structures for the [0,N] table entry.
 They both efficiently store the sub-parts that 

are shared between multiple parses.
 And they obviously avoid re-deriving those 

sub-parts.
 But neither can tell us which one is right.



33

9/25/2019 Speech and Language Processing - Jurafsky and Martin       65

Ambiguity

 In most cases, humans don’t notice 
incidental ambiguity (lexical or syntactic). 
It is resolved on the fly and never 
noticed.
 I ate the spaghetti with chopsticks
 I ate the spaghetti with meatballs

 We’ll try to model that with probabilities.

Shallow or Partial Parsing

 Sometimes we don’t need a complete 
parse tree
 Information extraction
 Question answering

 But we would like more than simple POS 
sequences

66
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Chunking

 Find major but unembedded constituents 
like NPs, VPs, AdjPs, PPs
 Most common task:  NP chunking of base NPs
 [NP I] saw [NP the man] on [NP the hill] with 

[NP a telescope]
 No attempt to identify full NPs – no recursion, 

no post-head words
 No overlapping constituents
 E.g., if we add PPs or VPs, they may consist 

only of their heads, e.g. [PP on]

Approaches:  RE Chunking

 Use regexps to identify constituents, e.g.
 NP  (DT) NN* NN
 Find longest matching chunk
 Hand-built rules
 No recursion but can cascade to approximate 

true CF parser, aggregating larger and larger 
constituents
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Approaches:  Tagging for 
Chunking

 Require annotated corpus
 Train classifier to classify each element of 

input in sequence (e.g. IOB Tagging)
 B (beginning of sequence)
 I (internal to sequence)
 O (outside of any sequence)
 No end-of-chunk coding – it’s implicit
 Easier to detect the beginning than the end
Book/B_VP that/B_NP flight/I_NP quickly/O

Summary and Limitations

 Sometimes shallow parsing is enough for 
task
 Performance quite accurate
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Distribution of Chunks in 
CONLL Shared Task

Summing Up

 Parsing as search:  what search strategies 
to use?
 Top down
 Bottom up
 How to combine?

 How to parse as little as possible
 Dynamic Programming

 Shallow Parsing

72


