Speech and Language Processing

Constituency Grammars Chapter 11

Today

- Formal Grammars
 - Context-free grammar
 - Grammars for English
 - Treebanks
 - Dependency grammars

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Simple View of Linguistic Analysis

Phonology

Morphology

/waddyasai/

what did you say

Syntax

what did you say saySemantics sayyou what

Semantics subjyou what say subj subj subj say subj subj

Syntax

- Grammars (and parsing) are key components in many applications
 - Grammar checkers
 - Dialogue management
 - Question answering
 - Information extraction
 - Machine translation

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Syntax

- Key notions that we'll cover
 - Constituency
 - Grammatical relations and Dependency
 - Heads
- Key formalism
 - Context-free grammars
- Resources
 - Treebanks

9/19/2019

Speech and Language Processing - Jurafsky and Martin

5

Types of Linguistic Theories

- Prescriptive theories: how people ought to talk
- Descriptive theories: how people actually talk
 - Most appropriate for NLP applications

Constituency

- The basic idea here is that groups of words within utterances can be shown to act as single units.
- And in a given language, these units form coherent classes that can be be shown to behave in similar ways
 - With respect to their internal structure
 - And with respect to other units in the language

9/19/2019

Speech and Language Processing - Jurafsky and Martin

7

Constituency

- Internal structure
 - We can describe an internal structure to the class (might have to use disjunctions of somewhat unlike sub-classes to do this).
- External behavior
 - For example, we can say that noun phrases can come before verbs

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Constituency

For example, it makes sense to the say that the following are all *noun phrases* in English...

Harry the Horse the Broadway coppers they a high-class spot such as Mindy's the reason he comes into the Hot Box three parties from Brooklyn

- Why? One piece of evidence is that they can all precede verbs.
 - This is external evidence

9/19/2019

Speech and Language Processing - Jurafsky and Martin

9

Grammars and Constituency

- Of course, there's nothing easy or obvious about how we come up with right set of constituents and the rules that govern how they combine...
- That's why there are so many different theories of grammar and competing analyses of the same data.
- The approach to grammar, and the analyses, adopted here are very generic (and don't correspond to any modern linguistic theory of grammar).

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Context-Free Grammars

- Context-free grammars (CFGs)
 - Also known as
 - Phrase structure grammars
 - Backus-Naur form
- Consist of
 - Rules
 - Terminals
 - Non-terminals

9/19/2019

Speech and Language Processing - Jurafsky and Marti

44

Context-Free Grammars

- Terminals
 - We'll take these to be words (for now)
- Non-Terminals
 - The constituents in a language
 - Like noun phrase, verb phrase and sentence
- Rules
 - Rules are equations that consist of a single non-terminal on the left and any number of terminals and non-terminals on the right.

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Some NP Rules

Here are some rules for our noun phrases

 $NP \rightarrow Det Nominal$ NP → ProperNoun $Nominal \rightarrow Noun \mid Nominal Noun$

- Together, these describe two kinds of NPs.
 - One that consists of a determiner followed by a nominal
 - And another that says that proper names are NPs.
 - The third rule illustrates two things
 - An explicit disjunction
 - Two kinds of nominals
 - A recursive definition
 - Same non-terminal on the right and left-side of the rule

9/19/2019

Speech and Language Processing - Jurafsky and Martin

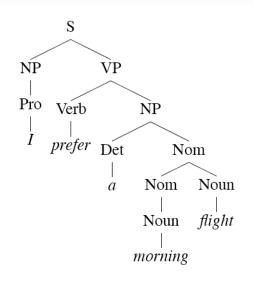
LO Grammar

Lo Grammar			
Gramm	ar Rules	Examples	
S	$\rightarrow NP VP$	I + want a morning flight	
NP	→ Pronoun	I	
	Proper-Noun	Los Angeles	
	Det Nominal	a + flight	
Nominal	→ Nominal Noun	morning + flight	
	Noun	flights	
VP	\rightarrow Verb	do	
	Verb NP	want + a flight	
	Verb NP PP	leave + Boston + in the morning	
	Verb PP	leaving + on Thursday	
PP	→ Preposition NP	from + Los Angeles	
N19	Speech and Language Process	ing - Jurafsky and Martin	

Generativity

- As with n-grams, you can view these rules as either analysis or synthesis machines
 - Generate strings in the language
 - Reject strings not in the language
 - Impose structures (trees) on strings in the language

9/19/2019


Speech and Language Processing - Jurafsky and Martir

15

16

Derivations

- A derivation is a sequence of rules applied to a string that accounts for that string
 - Covers all the elements in the string
 - Covers only the elements in the string

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Definition

- More formally, a CFG consists of
- N a set of **non-terminal symbols** (or **variables**)
- Σ a set of **terminal symbols** (disjoint from N)
- R a set of **rules** or productions, each of the form $A \rightarrow \beta$, where A is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N)$ *
- S a designated start symbol

9/19/2019

Speech and Language Processing - Jurafsky and Martin

47

Parsing

- Parsing is the process of taking a string and a grammar and returning a (multiple?) parse tree(s) for that string
 - There are languages we can capture with CFGs that we can't capture with regular expressions
 - There are properties that we can capture that we can't capture with n-grams

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Review

- POS Decoding
 - What does this mean?
 - What representation do we use?
 - What algorithm do we use, and why?
- Constituency Grammars
 - Linguistics
 - CS

Syntax in NLP applications

- Language modeling
 - Is "The girl I met wore a hat" a valid sentence in the language?
- Grammar checking
 - What's wrong with this sentence: "She wear of a hat"?
- Information extraction/Question Answering
 - In this sentence: "John worked at Pitt for two years, since the winter of 2014" when did John start working at Pitt?
 - Identify temporal expression noun phrase "the winter of 2014"
- Compositional semantics
 - Who did what to whom in this sentence: "The helpful man gave the crying child a coloring book about dinosaurs"
 - Identify subject, verb, direct object, indirect object
- Sentiment analysis
 - In this sentence: "It is a shame that the expensive renovation drove out the long term residents of the neighborhood" how does the writer feel about various entities mentioned in the sentence?
 - Identify embedded sentence (renovation drove out residents) as well as the relationship between entities in the embedded sentence (renovation, residents)
- Framing
 - "The ball broke the window" vs. "I broke the window with the ball"
- Machine translation
 - Need to know how languages have different ways of organizing sentences (e.g., typical adjectives come after noun in French)

Example

- Write a CFG for the language aⁿbⁿ, n is an integer
 = 1
 - Terminals = {a, b}
 - Nonterminals = {S}
 - Special symbol = S
 - Rules:
 - \blacksquare S \rightarrow a b
 - \blacksquare S \rightarrow a S b

An English Grammar Fragment

- Sentences
- Noun phrases
 - Agreement
- Verb phrases
 - Subcategorization

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Sentence Types

Declaratives: A plane left.

 $S \rightarrow NP VP$

■ Imperatives: *Leave!*

 $S \rightarrow VP$

Yes-No Questions: Did the plane leave?

 $S \rightarrow Aux NP VP$

WH Questions: When did the plane leave?

 $S \rightarrow WH-NP Aux NP VP$

9/19/2019

Speech and Language Processing - Jurafsky and Martin

22

Noun Phrases

 Let's consider the following rule in more detail...

NP → *Det Nominal*

- Most of the complexity of English noun phrases is hidden in this rule.
- Consider the derivation for the following example
 - All the morning flights from Denver to Tampa leaving before 10

9/19/2019

Speech and Language Processing - Jurafsky and Martin

NP Structure

- Clearly this NP is really about *flights*.
 That's the central criticial noun in this NP.
 Let's call that the *head*.
- We can dissect this kind of NP into the stuff that can come before the head, and the stuff that can come after it.

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Determiners

- Noun phrases can start with determiners...
- Determiners can be
 - Simple lexical items: *the, this, a, an,* etc.
 - A car
 - Or simple possessives
 - John's car
 - Or complex recursive versions of that
 - John's sister's husband's son's car

9/19/2019

Speech and Language Processing - Jurafsky and Marti

27

Nominals

- Contains the head and any pre- and postmodifiers of the head.
 - Pre-
 - Quantifiers, cardinals, ordinals...
 - Three cars
 - Adjectives
 - large cars
 - Ordering constraints
 - Three large cars
 - ?large three cars

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Postmodifiers

- Three kinds
 - Prepositional phrases
 - From Seattle
 - Non-finite clauses
 - Arriving before noon
 - Relative clauses
 - That serve breakfast
- Same general (recursive) rule to handle these
 - Nominal → Nominal PP
 - Nominal → Nominal GerundVP
 - Nominal → Nominal RelClause

9/19/2019

Speech and Language Processing - Jurafsky and Martin

20

Agreement

- By agreement, we have in mind constraints that hold among various constituents that take part in a rule or set of rules
- For example, in English, determiners and the head nouns in NPs have to agree in their number.

This flight
Those flights

*This flights

*Those flight

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Problem

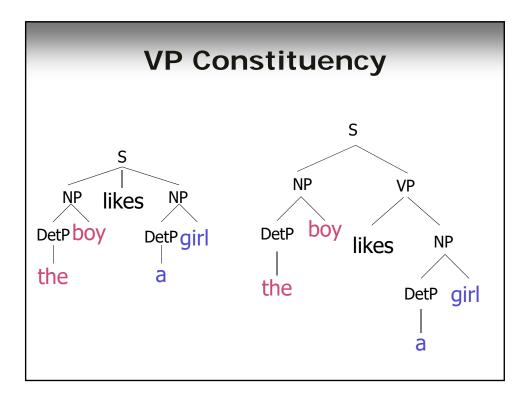
- Our earlier NP rules are clearly deficient since they don't capture this constraint
 - NP → Det Nominal
 - Accepts, and assigns correct structures, to grammatical examples (this flight)
 - But its also happy with incorrect examples (*these flight)
 - Such a rule is said to overgenerate.
 - We'll come back to this in a bit

9/19/2019

Speech and Language Processing - Jurafsky and Marti

31

NP Constituency: Review


- NPs can all appear before a verb:
 - Some big dogs and some little dogs are going around in cars...
 - Big dogs, little dogs, red dogs, blue dogs, yellow dogs, green dogs, black dogs, and white dogs are all at a dog party!
 - I do not
- But individual words can't always appear before verbs:
 - *little are going...
 - *blue are...
 - *and are
- Must be able to state generalizations like:
 - Noun phrases occur before verbs

PP Constituency

- Preposing and postposing:
 - Under a tree is a yellow dog.
 - A yellow dog is under a tree.
- But not:
 - *Under, is a yellow dog a tree.
 - *Under a is a yellow dog tree.
- Prepositional phrases notable for ambiguity in attachment
 - I saw a man on a hill with a telescope.

VP Constituency

- Existence of VP is a linguistic (i.e., empirical) claim, not a methodological claim
- Syntactic evidence
 - VP-fronting (and quickly clean the carpet he did!)
 - VP-ellipsis (He cleaned the carpet quickly, and so did she)
 - Adjuncts can occur before and after VP, but not in VP (He often eats beans, *he eats often beans)

Verb Phrases

 English VPs consist of a head verb along with 0 or more following constituents which we'll call arguments.

 $VP \rightarrow Verb$ disappear

 $VP \rightarrow Verb NP$ prefer a morning flight

 $VP \rightarrow Verb NP PP$ leave Boston in the morning

 $VP \rightarrow Verb PP$ leaving on Thursday

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Subcategorization

- But, even though there are many valid VP rules in English, not all verbs are allowed to participate in all those VP rules.
- We can subcategorize the verbs in a language according to the sets of VP rules that they participate in.
- This is a modern take on the traditional notion of transitive/intransitive.
- Modern grammars may have 100s or such classes.

9/19/2019

Speech and Language Processing - Jurafsky and Martin

27

Subcategorization

Sneeze: John sneezed

Find: Please find [a flight to NY]_{NP}

Help: Can you help [me]_{NP}[with a flight]_{PP}

• Prefer: I prefer [to leave earlier]_{TO-VP}

•

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Subcategorization

- *John sneezed the book
- *I prefer United has a flight
- *Give with a flight
- As with agreement phenomena, we need a way to formally express the constraints

9/19/2019

Speech and Language Processing - Jurafsky and Martin

20

Why?

- Right now, the various rules for VPs overgenerate.
 - They permit the presence of strings containing verbs and arguments that don't go together
 - For example
 - VP -> V NP therefore

Sneezed the book is a VP since "sneeze" is a verb and "the book" is a valid NP

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Possible CFG Solution

- Possible solution for agreement.
- Can use the same trick for all the verb/VP classes.
- SgS -> SgNP SgVP
- PIS -> PINp PIVP
- SgNP -> SgDet SgNom
- PINP -> PIDet PINom
- PIVP -> PIV NP
- SgVP ->SgV Np
- ...

9/19/2019

Speech and Language Processing - Jurafsky and Martir

41

CFG Solution for Agreement

- It works and stays within the power of CFGs
- But its ugly
- And it doesn't scale all that well because of the interaction among the various constraints explodes the number of rules in our grammar.

9/19/2019

Speech and Language Processing - Jurafsky and Martin

The Point

- CFGs appear to be just about what we need to account for a lot of basic syntactic structure in English.
- But there are problems
 - That can be dealt with adequately, although not elegantly, by staying within the CFG framework.
- There are simpler, more elegant, solutions that take us out of the CFG framework (beyond its formal power)
 - LFG, HPSG, Construction grammar, XTAG, etc.
 - Prior edition explores the unification approach

9/19/2019

Speech and Language Processing - Jurafsky and Marti

43

Treebanks

- Treebanks are corpora in which each sentence has been paired with a parse tree (presumably the right one).
- These are generally created
 - By first parsing the collection with an automatic parser
 - And then having human annotators correct each parse as necessary.
- This generally requires detailed annotation guidelines that provide a POS tagset, a grammar and instructions for how to deal with particular grammatical constructions.

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Penn Treebank

- Penn TreeBank is a widely used treebank.
 - Most well known is (S-TPC-2 (NP-SB))

 the Wall Street (VP (MI (VP) (NI (
 - •1 M words from the 1987-1989 Wall Street Journal.

```
(NP-SBJ-1 (PRP We) )
 (VP (MD would)
  (VP (VB have)
       (NP-SBJ (-NONE- *-1) )
        (VP (TO to)
         (VP (VB wait)
           (SBAR-TMP (IN until)
               (NP-SBJ (PRP we) )
               (VP (VBP have)
                 (VP (VBN collected)
                   (PP-CLR (IN on)
                     (NP (DT those)(NNS assets))))))))))))
(, ,) ('' '')
(NP-SBJ (PRP he) )
(VP (VBD said)
 (S (-NONE- *T*-2) ))
(. .) ))
```

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Treebank Grammars

- Treebanks implicitly define a grammar for the language covered in the treebank.
- Simply take the local rules that make up the sub-trees in all the trees in the collection and you have a grammar.
- Not complete, but if you have decent size corpus, you'll have a grammar with decent coverage.

9/19/2019

Speech and Language Processing - Jurafsky and Martin

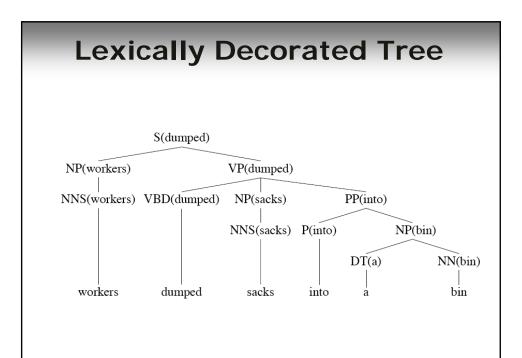
Treebank Grammars

- Such grammars tend to be very flat due to the fact that they tend to avoid recursion.
 - To ease the annotators burden
- For example, the Penn Treebank has 4500 different rules for VPs. Among them...

```
egin{array}{llll} \mbox{VP} & 
ightarrow \mbox{VBD} & \mbox{PP} & \mbox{PP} \mbox{VP} & 
ightarrow \mbox{VBD} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \mbox
```

9/19/2019

Speech and Language Processing - Jurafsky and Martin

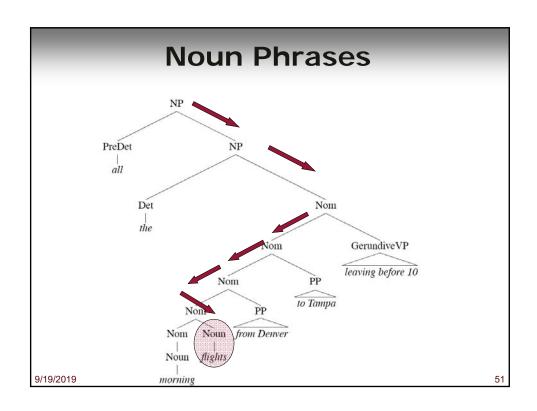

47

Heads in Trees

- Finding heads in treebank trees is a task that arises frequently in many applications.
 - Particularly important in statistical parsing
- We can visualize this task by annotating the nodes of a parse tree with the heads of each corresponding node.

9/19/2019

Speech and Language Processing - Jurafsky and Martin


Head Finding

The standard way to do head finding is to use a simple set of tree traversal rules specific to each non-terminal in the grammar.

9/19/2019

9/19/2019

Speech and Language Processing - Jurafsky and Martin

Treebank Uses

- Treebanks (and headfinding) are particularly critical to the development of statistical parsers
 - More later

9/19/2019

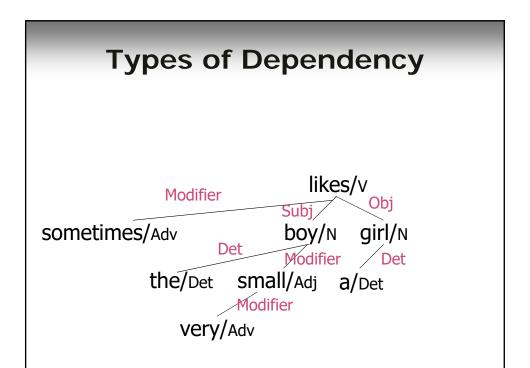
Speech and Language Processing - Jurafsky and Martin

Dependency Grammars

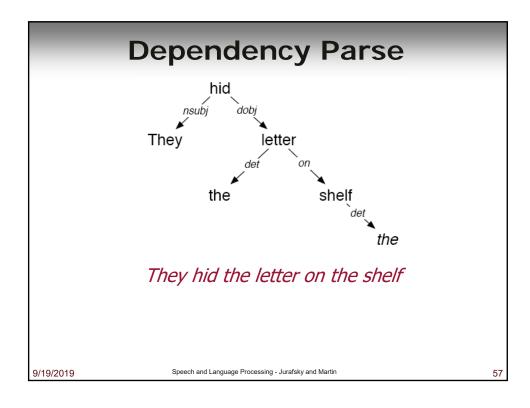
- In CFG-style phrase-structure grammars the main focus is on *constituents*.
- But it turns out you can get a lot done with just binary relations among the words in an utterance.
- In a dependency grammar framework, a parse is a tree where
 - the nodes stand for the words in an utterance
 - The links between the words represent dependency relations between pairs of words.
 - Relations may be typed (labeled), or not.

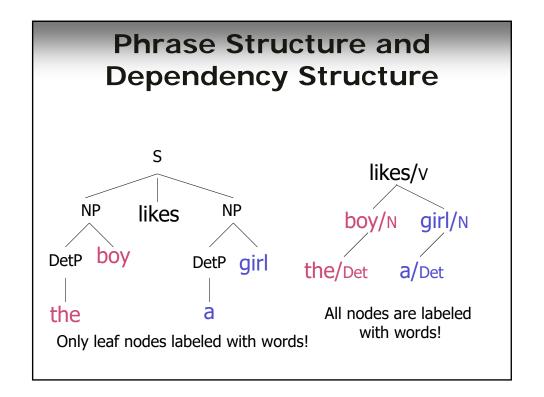
9/19/2019

Speech and Language Processing - Jurafsky and Martin


53

Grammatical Relations


- Types of relations between words
 - Arguments: subject, object, indirect object, prepositional object
 - Adjuncts: temporal, locative, causal, manner,



Function Words

Dependency Relations			
Argument Deper	ıdencies	Description	
nsubj		nominal subject	
csubj		clausal subject	
dobj		direct object	
iobj		indirect object	
pobj		object of preposition	
Modifier Depend	lencies	Description	
tmod		temporal modifier	
appos		appositional modifier	
det		determiner	
prep		prepositional modifier	
-			
/19/2019	Speech and Language Processing - Jurafsky and Martin		

Dependency Parsing

- The dependency approach has a number of advantages over full phrase-structure parsing.
 - Deals well with free word order languages where the constituent structure is quite fluid
 - Parsing is much faster than CFG-bases parsers
 - Dependency structure often captures the syntactic relations needed by later applications
 - CFG-based approaches often extract this same information from trees anyway.
- See draft J&M for new chapter

9/19/2019

Speech and Language Processing - Jurafsky and Martin

59

Summary

- Context-free grammars can be used to model various facts about the syntax of a language.
- When paired with parsers, such grammars consititute a critical component in many applications.
- Constituency is a key phenomena easily captured with CFG rules.
 - But agreement and subcategorization do pose significant problems
- Treebanks pair sentences in corpus with their corresponding trees.

9/19/2019

Speech and Language Processing - Jurafsky and Martin