Part-of-
 Speech Tagging

Chapter 8

(8.1-8.4.6)

Outline

- Parts of speech (POS)
- Tagsets
- POS Tagging
- Rule-based tagging
- Probabilistic (HMM) tagging

Garden Path Sentences

- The old dog the footsteps of the young

Parts of Speech

- Traditional parts of speech
- Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
- Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...
- Lots of debate within linguistics about the number, nature, and universality of these
- We'll completely ignore this debate.

Parts of Speech

- Traditional parts of speech
- ~ 8 of them

POS examples

- N noun chair, bandwidth, pacing
- V verb study, debate, munch
- ADJ adjective purple, tall, ridiculous
- ADV adverb unfortunately, slowly
- P
preposition of, by, to
- PRO pronoun I, me, mine
- DET determiner the, a, that, those

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD tag
the
koala
put
the
keys
on
the
table

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.
word
tag
the
DET
koala
put
the
keys
on
the
table

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD tag
the DET
koala \mathbf{N}
put
the
keys
on
the
table

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD tag

the	DET
koala	N
put	V

the
keys
on
the
table

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD tag

the	DET
koala	N
put	V
the	DET

keys
on
the
table

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD tag

the	DET
koala	N
put	V
the	DET
keys	N

on
the
table

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD tag

the	DET
koala	N
put	V
the	DET
keys	N
on	P

the
table

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD tag

the	DET
koala	N
put	V
the	DET
keys	N
on	P
the	DET

table

POS Tagging

- The process of assigning a part-of-speech or lexical class marker to each word in a collection.

WORD tag

the	DET
koala	\mathbf{N}
put	V
the	DET
keys	N
on	P
the	DET
table	N

Why is POS Tagging Useful?

- First step of many practical tasks, e.g.
- Speech synthesis (aka text to speech)
- How to pronounce "lead"?
- OBject obJECT
- CONtent conTENT
- Parsing
- Need to know if a word is an N or V before you can parse
- Information extraction
- Finding names, relations, etc.
- Language modeling
- Backoff

Why is POS Tagging Difficult?

- Words often have more than one POS: back
- The back door = adjective
- On my back =
- Win the voters back =
- Promised to back the bill =

Why is POS Tagging Difficult?

- Words often have more than one POS: back
- The back door = adjective
- On my back = noun
- Win the voters back =
- Promised to back the bill =

Why is POS Tagging Difficult?

- Words often have more than one POS: back
- The back door = adjective
- On my back = noun
- Win the voters back = adverb
- Promised to back the bill =

Why is POS Tagging Difficult?

- Words often have more than one POS: back
- The back door = adjective
- On my back = noun
- Win the voters back = adverb
- Promised to back the bill = verb
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS Tagging

- Input: Plays well with others
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS
- Output: Plays/VBZ well/RB with/IN otr.Postags .JS

POS tagging performance

- How many tags are correct? (Tag accuracy)
- About 97\% currently
- But baseline is already 90%
- Baseline is performance of stupidest possible method
- Tag every word with its most frequent tag
- Tag unknown words as nouns
- Partly easy because
- Many words are unambiguous
- You get points for them (the, a, etc.) and for punctuation marks!

Deciding on the correct part of speech can be difficult even for people

- Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
- Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

How difficult is POS tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
- I know that he is honest = IN
- Yes, that play was nice = DT
- You can't go that far = RB
- 40% of the word tokens are ambiguous

Review

- Backoff/Interpolation
- Parts of Speech
- What?
- Part of Speech Tagging
- What?
- Why?
- Easy or hard?
- Evaluation

Open vs. Closed Classes

- Closed class: why?
- Determiners: a, an, the
- Prepositions: of, in, by, ...
- Auxiliaries: may, can, will had, been, ...
- Pronouns: I, you, she, mine, his, them, ...
- Usually function words (short common words which play a role in grammar)
- Open class: why?
- English has 4: Nouns, Verbs, Adjectives, Adverbs
- Many languages have these 4, but not all!

Open vs. Closed Classes

- Closed class: a small fixed membership
- Determiners: a, an, the
- Prepositions: of, in, by, ...
- Auxiliaries: may, can, will had, been, ...
- Pronouns: I, you, she, mine, his, them, ...
- Usually function words (short common words which play a role in grammar)
- Open class: new ones can be created all the time
- English has 4: Nouns, Verbs, Adjectives, Adverbs
- Many languages have these 4, but not all!

Open Class Words

- Nouns
- Proper nouns (Pittsburgh, Pat Gallagher)
- English capitalizes these.
- Common nouns (the rest).
- Count nouns and mass nouns
- Count: have plurals, get counted: goat/goats, one goat, two goats
- Mass: don't get counted (snow, salt, communism) (*two snows)
- Adverbs: tend to modify things
- Unfortunately, John walked home extremely slowly yesterday
- Directional/locative adverbs (here,home, downhill)
- Degree adverbs (extremely, very, somewhat)
- Manner adverbs (slowly, slinkily, delicately)
- Verbs
- In English, have morphological affixes (eat/eats/eaten)

Closed Class Words

Examples:

- prepositions: on, under, over, ...
- particles: up, down, on, off, ...
- determiners: a, an, the, ...
- pronouns: she, who, I, ..
- conjunctions: and, but, or, ...
- auxiliary verbs: can, may should, ...
- numerals: one, two, three, third, ...

Prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

POS Tagging Choosing a Tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
- N, V, Adj, Adv.
- More commonly used set is finer grained, the "Penn TreeBank tagset", 45 tags
- Even more fine-grained tagsets exist

Penn TreeBank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	$+, \%, \&$
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3 sg pres	eats
LS	list item marker	1,2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WPS	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	"	left quote	'or ${ }^{\prime}$
POS	possessive ending	's	"	right quote	, or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, \{, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), \}, >
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster	.	sentence-final punc	! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ; ... --
RP	particle	up, off			

Using the Penn Tagset

- The/? grand/? jury/? commmented/? on/? a/? number/? of/? other/? topics/? ./?

Using the Penn Tagset

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

Recall POS Tagging Difficulty

- Words often have more than one POS: back
- The back door = JJ
- On my back = NN
- Win the voters back = RB
- Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How Hard is POS Tagging? Measuring Ambiguity

	87-tag Original Brown	45-tag Treebank Brown
Unambiguous (1 tag)	$\mathbf{4 4 , 0 1 9}$	$\mathbf{3 8 , 8 5 7}$
Ambiguous (2-7 tags)	$\mathbf{5 , 4 9 0}$	$\mathbf{8 8 4 4}$
Details:	2 tags	4,967
6,731		
3 tags	411	1621
4 tags	91	357
5 tags	17	90
6 tags	2 (well, beat)	32
7 tags	2 (still, down)	6 (well, set, round,
		4 open, fit, down)
8 tags		3 (s, half, back, a)
9 tags		

Tagging Whole Sentences with POS is Hard too

- Ambiguous POS contexts
- E.g., Time flies like an arrow.
- Possible POS assignments
- Time/[V,N] flies/[V,N] like/[V,Prep] an/Det arrow/N
- Time/N flies/V like/Prep an/Det arrow/N
- Time/V flies/N like/Prep an/Det arrow/N
- Time/N flies/N like/V an/Det arrow/N
-

How Do We Disambiguate POS?

- Many words have only one POS tag (e.g. is, Mary, smallest)
- Others have a single most likely tag (e.g. Dog is less used as a V)
- Tags also tend to co-occur regularly with other tags (e.g. Det, N)
- In addition to conditional probabilities of words $\mathrm{P}\left(\mathrm{w}_{1} \mid \mathrm{w}_{\mathrm{n}-1}\right)$, we can look at POS likelihoods $\mathrm{P}\left(\mathrm{t}_{1} \mid \mathrm{t}_{\mathrm{n}-1}\right)$ to disambiguate sentences and to assess sentence likelihoods

More and Better Features Feature-based tagger

- Can do surprisingly well just looking at a word by itself:
- Word the: the \rightarrow DT
- Lowercased word Importantly: importantly \rightarrow RB
- Prefixes unfathomable: un- \rightarrow JJ
- Suffixes Importantly: -ly \rightarrow RB
- Capitalization Meridian: CAP \rightarrow NNP
- Word shapes 35 -year: $\mathrm{d}-\mathrm{x} \rightarrow \mathrm{JJ}$

Overview: POS Tagging Accuracies

- Most freq tag:
- Trigram HMM:
~95\% / ~55\%
- Maxent P(t|w):
93.7\% / 82.6\%
- Upper bound:
~98\% (human)

Rule-Based Tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

Start With a Dictionary

- she:
- promised:
- to
- back:
- the:
- bill:

Start With a Dictionary

- she:

PRP

- promised: VBN,VBD
- to

TO

- back:
- the:

VB, JJ, RB, NN

- bill:

DT
NN, VB

Assign Every Possible Tag

	NN		
	RB		
VBN	JJ	VB	
PRP VBD	TO	VB	DT
She promised to	lack the bill		

Write Rules to Eliminate Tags

Eliminate VBN if VBD is an option when VBN|VBD follows "<start> PRP"

NN
RB

VBN
PRP VBD
She promised

JJ VB
TO VB DT NN
to back the bill

POS tag sequences

- Some tag sequences are more likely occur than others
- POS Ngram view
https://books.google.com/ngrams/graph?c ontent $=$ ADJ + NOUN \%2C ADV + NO UN \%2C+ ADV + VERB

> Existing methods often model POS tagging as a sequence tagging problem

POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
- Secretariat is expected to race tomorrow
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view:
- Consider all possible sequences of tags
- Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}$.

How do you predict the tags?

- Two types of information are useful
- Relations between words and tags
- Relations between tags and tags
- DT NN, DT JJ NN...

Getting to HMMs (Hidden Markov Models)

- We want, out of all sequences of n tags $t_{1} \ldots t_{n}$ the single tag sequence such that $\mathrm{P}\left(\mathrm{t}_{1} \ldots \mathrm{t}_{n} \mid \mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{n}}\right)$ is highest.

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- Hat ^ means "our estimate of the best one"
- $\operatorname{Argmax}_{x} f(x)$ means "the x such that $f(x)$ is maximized"

Getting to HMMs

- This equation is guaranteed to give us the best tag sequence

$$
\hat{\tau}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
- Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute

Using Bayes Rule

$$
\begin{gathered}
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)} \\
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)}{P\left(w_{1}^{n}\right)} \\
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(w_{1}^{n} \mid t_{1}^{n}\right) P\left(t_{1}^{n}\right)
\end{gathered}
$$

Statistical POS tagging

- What is the most likely sequence of tags for the given sequence of words w

$$
\begin{aligned}
\underset{\mathbf{t}}{\operatorname{argmax}} P(\mathbf{t} \mid \mathbf{w}) & =\underset{\mathbf{t}}{\operatorname{argmax}} \frac{P(\mathbf{t}, \mathbf{w})}{P(\mathbf{w})} \\
& =\underset{\mathbf{t}}{\operatorname{argmax}} P(\mathbf{t}, \mathbf{w}) \\
& =\underset{\mathbf{t}}{\operatorname{argmax}} P(\mathbf{t}) P(\mathbf{w} \mid \mathbf{t})
\end{aligned}
$$

P(DT JJ NN | a smart dog) =

Statistical POS tagging

- What is the most likely sequence of tags for the given sequence of words w

$$
\begin{aligned}
\underset{\mathbf{t}}{\operatorname{argmax}} P(\mathbf{t} \mid \mathbf{w}) & =\underset{\mathbf{t}}{\operatorname{argmax}} \frac{P(\mathbf{t}, \mathbf{w})}{P(\mathbf{w})} \\
& =\underset{\mathbf{t}}{\operatorname{argmax}} P(\mathbf{t}, \mathbf{w}) \\
& =\underset{\mathbf{t}}{\operatorname{argmax}} P(\mathbf{t}) P(\mathbf{w} \mid \mathbf{t})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{DT} \text { JJ NN | a smart dog) }) & \mathrm{P}(\text { (DD JJ NN a smart dog) / P (a smart dog) } \\
& \propto \mathrm{P}(D D \mathrm{JJ} N N \text { a smart dog) } \\
& =\mathrm{P}(\text { (DD JJ NN) P(a smart dog | DD JJ NN })
\end{aligned}
$$

Likelihood and Prior

$$
\begin{aligned}
& \text { Q. } \hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} \overbrace{P\left(w_{1}^{n} \mid t_{1}^{n}\right)}^{\text {likelihood }} \overbrace{P\left(t_{1}^{n}\right)}^{\text {prior }} \\
& P\left(w_{1}^{n} \mid t_{1}^{n}\right) \approx \prod_{i=1} P\left(w_{i} \mid t_{i}\right) \\
& P\left(t_{1}^{n}\right) \approx \prod_{i=1}^{n} P\left(t_{i} \mid t_{i-1}\right) \\
& \text { (}{ }_{t_{1}^{n}}^{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right) \approx \underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{i} \mid t_{i-1}\right)
\end{aligned}
$$

Two Kinds of Probabilities

- Tag transition probabilities $p\left(\mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}-1}\right)$
- Determiners likely to precede adjs and nouns
- That/DT flight/NN
- The/DT yellow/JJ hat/NN
- So we expect P(NN|DT) and P(JJ|DT) to be high
- But P(DT|JJ) to be:
- Compute P(NN|DT) by counting in a labeled

$$
\text { corpus: } \quad P\left(t_{i} \mid t_{i-1}\right)=\frac{C\left(t_{i-1}, t_{i}\right)}{C\left(t_{i-1}\right)}
$$

$$
P(N N \mid D T)=\frac{C(D T, N N)}{C(D T)}=\frac{56,509}{116,454}=.49
$$

Two Kinds of Probabilities

- Word likelihood (emission) probabilities $\mathrm{p}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}}\right)$
- VBZ (3sg Pres verb) likely to be "is"
- Compute P(is \mid VBZ) by counting in a labeled

$$
\begin{aligned}
& \text { corpus: } P\left(w_{i} \mid t_{i}\right)=\frac{C\left(t_{i}, w_{i}\right)}{C\left(t_{i}\right)} \\
& P(i s \mid V B Z)=\frac{C(V B Z, i s)}{C(V B Z)}=\frac{10,073}{21,627}=.47
\end{aligned}
$$

Put them together

- Two independent assumptions
- Approximate $\mathrm{P}(\mathbf{t})$ by a bi(or N$)$-gram model
- Assume each word depends only on its POS tag

Table representation

Transition Matrix A

	\mathbf{D}	\mathbf{N}	\mathbf{V}	\mathbf{A}	\cdot
\mathbf{D}		0.8		0.2	
\mathbf{N}		0.7	0.3		
\mathbf{V}	0.6				0.4
\mathbf{A}		0.8		0.2	
.					

Initial state vector π

	\mathbf{D}	\mathbf{N}	\mathbf{V}	\mathbf{A}	.
π	1.0				

Emission Matrix B

	the	man	ball	throws	sees	red	blue	.
D	1.0							
N		0.7	0.3					
V				0.6	0.4			
A						0.8	0.2	
.								1

Let $\lambda=\{A, B, \pi\}$ represents all paramete

Prediction in generative model

- Inference: What is the most likely sequence of tags for the given sequence of words \mathbf{w}

- What are the latent states that most likely generate the sequence of word \mathbf{w}

Example: The Verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Disambiguating "race"

(a)

(b)

Example

- $\mathrm{P}(\mathrm{NN} \mid \mathrm{TO})=.00047$
- $P($ VB|TO $)=.83$
- $P($ race|NN $)=.00057$
- $P($ race $\mid V B)=.00012$
- $P(N R \mid V B)=.0027$
- $P(N R \mid N N)=.0012$
- $P(V B \mid T O) P(N R \mid V B) P($ race $\mid V B)=.00000027$
- $P(N N \mid T O) P(N R \mid N N) P($ race $\mid N N)=.00000000032$
- So we (correctly) choose the verb reading

Hidden Markov Models

- What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)

Definitions

- A weighted finite-state automaton adds probabilities to the arcs
- The sum of the probabilities leaving any arc must sum to one
- A Markov chain is a special case of a WFSA in which the input sequence uniquely determines which states the automaton will go through
- Markov chains can't represent inherently ambiguous problems
- Useful for assigning probabilities to unambiguous sequences

Markov Chain for Weather

Weather continued

Markov Chain for Words

Markov Chain: "First-order observable Markov Model"

- A set of states
- $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} . . \mathrm{q}_{\mathrm{N}}$, the state at time t is q_{t}
- Transition probabilities:
- a set of probabilities $A=a_{01} a_{02} \ldots a_{n 1} \ldots a_{n n}$.
- Each a_{ij} represents the probability of transitioning from state i to state j
- The set of these is the transition probability matrix A
- Current state only depends on previous state

$$
P\left(q_{i} \mid q_{1} \ldots q_{i-1}\right)=P\left(q_{i} \mid q_{i-1}\right)
$$

Markov Chain for Weather

- What is the probability of 4 consecutive rainy days?
- Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- $P(3,3,3,3)=$

Markov Chain for Weather

- What is the probability of 4 consecutive rainy days?
- Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- $P(3,3,3,3)=$
- $\pi_{3} \mathrm{a}_{33} \mathrm{a}_{33} \mathrm{a}_{33}=0.2 \times(0.6)^{3}=0.0432$

Review

- Tagsets
- What?
- Example(s)
- Baseline(s) for tagging evaluation
- Two types of probabilities for POS tagging - assumptions
- Markov Chain vs Hidden Markov Model

HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in Pittsburgh for summer of 2018
- But you find a diary
- Which lists how many ice-creams someone ate every date that summer
- Our job: figure out how hot it was

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
- See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
- The output symbols are words
- But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Models

- States $\mathrm{Q}=\mathrm{q}_{1}, \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{N}}$;
- Observations $\mathrm{O}=\mathrm{o}_{1}, \mathrm{o}_{2} \ldots \mathrm{o}_{\mathrm{N}}$;
- Each observation is a symbol from a vocabulary V $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{v}}\right\}$
- Transition probabilities
- Transition probability matrix $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$

$$
a_{i j}=P\left(q_{t}=j \mid q_{t-1}=i\right) \quad 1 \leq i, j \leq N
$$

- Observation likelihoods
- Output probability matrix $B=\left\{b_{i}(\mathrm{k})\right\}$

$$
\begin{aligned}
& b_{i}(k)=P\left(X_{t}=o_{k} \mid q_{t}=i\right) \\
& \pi_{i}=P\left(q_{1}=i\right) \quad 1 \leq i \leq N
\end{aligned}
$$

- Special initial probability vector π

Task

- Given
- Ice Cream Observation Sequence: 1,2,3,2,2,2,3...
- Produce:
- Weather Sequence: H,C,H,H,H,C...

Weather/ I ce Cream HMM

- Hidden States:
- Transition probabilities:
- Observations:

Weather/ I ce Cream HMM

- Hidden States: \{Hot,Cold\}
- Transition probabilities (A Matrix) between H and C
- Observations: $\{1,2,3\}$ \# of ice creams eaten per day

HMM for I ce Cream

Back to POS Tagging: Transition Probabilities

Observation Likelihoods

What can HMMs Do?

- Likelihood: Given an HMM λ and an observation sequence 0 , determine the likelihood $\mathrm{P}(\mathrm{O}, \lambda)$: language modeling
- Decoding: Given an observation sequence O and an $\mathrm{HMM} \lambda$, discover the best hidden state sequence Q: Given seq of ice creams, what was the most likely weather on those days? (tagging)
- Learning: Given an observation sequence O and the set of states in the HMM, learn the HMM parameters

Decoding

- Ok, now we have a complete model that can give us what we need. Recall that we need to get

$$
\hat{t}_{1}^{n}=\underset{t_{1}^{n}}{\operatorname{argmax}} P\left(t_{1}^{n} \mid w_{1}^{n}\right)
$$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
- Not a good idea.
- In practice: Viterbi Algorithm (dynamic programming)

Viterbi Algorithm

- Intuition: since state transition out of a state only depend on the current state (and not previous states), we can record for each state the optimal path
- We record
- Cheapest cost to state at step
- Backtrace for that state to best predecessor

Viterbi Summary

- Create an array
- With columns corresponding to inputs
- Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell (not all paths).

Another Viterbi Example

- Analyzing "Fish sleep"
- Done in class

Evaluation

- So once you have your POS tagger running how do you evaluate it?
- Overall error rate with respect to a goldstandard test set.
- Error rates on particular tags
- Error rates on particular words
- Tag confusions...
- Need a baseline - just the most frequent tag is 90% accurate!

Error Analysis

- Look at a confusion matrix

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	-	.2			.7		
JJ	.2	-	$\mathbf{3 . 3}$	2.1	1.7	.2	$\mathbf{2 . 7}$
NN		$\mathbf{8 . 7}$	-				.2
NNP	.2	$\mathbf{3 . 3}$	$\mathbf{4 . 1}$	-	.2		
RB	$\mathbf{2 . 2}$	2.0	.5		-		
VBD		.3	.5			-	$\mathbf{4 . 4}$
VBN		$\mathbf{2 . 8}$				$\mathbf{2 . 6}$	-

- See what errors are causing problems
- Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
- Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Evaluation

- The result is compared with a manually coded "Gold Standard"
- Typically accuracy reaches 96-97\%
- This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

More Complex I ssues

- Tag indeterminacy: when 'truth' isn't clear Caribbean cooking, child seat
- Tagging multipart words wouldn't --> would/MD n't/RB
- How to handle unknown words
- Assume all tags equally likely
- Assume same tag distribution as all other singletons in corpus
- Use morphology, word length,....

Other Tagging Tasks

- Noun Phrase (NP) Chunking
- [the student] said [the exam] is hard
- Three tabs
- B = beginning of NP
- I = continuing in NP
- $\mathrm{O}=$ other word
- Tagging result
- The/B student/I said/O the/B exam/I is/0 hard/0

Summary

- Parts of speech
- Tagsets
- Part of speech tagging
- Rule-Based, HMM Tagging
- Other methods later in course

