Suppose we have the following PCFG for modeling some simple English sentences.

- Terminals \{the, a, some, steak, fork, sauce, Alice, golden, hot, ate, I ...\}
- Non-terminals \{S, NP, VP, PP, NBAR, NN, PRPN, PRON, P, JJ, VB $\}$

1.0 S \rightarrow NP VP	$\begin{aligned} & 0.6 \mathrm{VP} \rightarrow \mathrm{VB} \mathrm{NP} \\ & 0.3 \mathrm{VP} \rightarrow \mathrm{VB} \\ & 0.1 \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \end{aligned}$	$1.0 \mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$
		$1.0 \mathrm{PRON} \rightarrow \mathrm{I}$
$\begin{aligned} & 0.5 \mathrm{NP} \rightarrow \text { DT NBAR } \\ & 0.3 \mathrm{NP} \rightarrow \text { PRPN } \\ & 0.2 \mathrm{NP} \rightarrow \text { PRON } \end{aligned}$	$\begin{aligned} & 0.75 \text { NBAR } \rightarrow \text { NN } \\ & 0.15 \text { NBAR } \rightarrow \text { NBAR PP } \\ & 0.1 \text { NBAR } \rightarrow \text { JJ NBAR } \end{aligned}$	1.0 PRPN \rightarrow Alice
		$\begin{aligned} & 0.5 \mathrm{JJ} \rightarrow \text { golden } \\ & 0.5 \mathrm{JJ} \rightarrow \text { hot } \end{aligned}$
$\begin{aligned} & 0.4 \mathrm{DT} \rightarrow \text { the } \\ & 0.4 \mathrm{DT} \rightarrow \text { a } \\ & 0.2 \mathrm{DT} \rightarrow \text { some } \end{aligned}$	$0.35 \mathrm{NN} \rightarrow$ steak $0.35 \mathrm{NN} \rightarrow$ sauce 0.3 $\mathrm{NN} \rightarrow$ fork	$1.0 \mathrm{VB} \rightarrow$ ate
		$1.0 \mathrm{P} \rightarrow$ with

1. What is the probability of the sentence "I ate" in the grammar?
2. What would be the probability of the sentence if it had a second parse?
