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Abstract

This paper examines two different mechanisms for saving
power in battery-operated embedded systems. The first
is that the system can be placed in a sleep state if it is
idle. However, a fixed amount of energy is required to
bring the system back into an active state in which it can
resume work. The second way in which power savings can
be achieved is by varying the speed at which jobs are run.
We utilize a power consumption curve P(s) which indicates
the power consumption level given a particular speed. We
assume that P(s) and P(s)/s are convex. The problem is to
schedule arriving jobs in a way that minimizes total energy
use and so that each job is completed after its arrival time
and before its deadline. Although each problem has been
considered separately, this is the first theoretical analysis of
systems which can use both mechanisms. We give an offline
algorithm which is within a factor of three of the optimal
algorithm. We also give an online algorithm with a constant
competitive ratio.

1 Introduction

As battery-operated embedded systems proliferate, en-
ergy efficiency is becoming an increasingly critical con-
sideration in system design. This paper examines strate-
gies which seek to minimize power usage in such systems
via two different mechanisms:

1. Sleep State: if a system or device is idle it can be
put into a low-power sleep state. While the device
consumes less power in this state, a fixed amount
of energy is required to transition the system back
to an on state in which tasks can be performed.
An offline algorithm which knows ahead of time
the length of the idle period can determine whether
the idle period is long enough so that the savings in
energy from being in the sleep state outweighs the
cost to transition back to the on state. An online
algorithm does not know the length of the idle
period in advance and must determine a threshold
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T such that if the idle period lasts for at least time
T, 1t will transition to the sleep state after that
time.

2. Dynamic Speed Scaling: some systems can
perform tasks at different speeds. The power usage
of such a system is typically described by a convex
function P(s), where P(s) is the power-usage level
of the system when it is running at speed s. In
many settings, the amount of work required by
jobs can be estimated when they arrive into the
system. The goal is to complete all jobs between
their arrival time and their deadline in a way that
minimizes the total energy consumption. Since
the power function is convex, it is more energy
efficient to slow down the execution of jobs as
much as possible while still respecting their timing
constraints. An offline algorithm knows about all
jobs in advance while an online algorithm only
learns about a job upon its arrival.

We design algorithms for the Dynamic Speed Scal-
ing problem in which the system has the additional fea-
ture of a sleep state. We call this problem Dynamic
Speed Scaling with Sleep State (DSS-S). DSS-NS (no
sleep) will denote the Dynamic Speed Scaling without
a sleep state. Combining these two problems introduces
challenges which do not appear in either of the original
problems. In the first problem, the length of the idle in-
tervals is given part of the input whereas in our problem
they are created by the scheduler which decides when
and how fast to perform the tasks. In the DSS-NS prob-
lem, it is always in the best interest of the scheduler to
run jobs as slowly as possible within the constraints of
the arrival times and deadlines due to the convexity of
the power function. By contrast in DSS-S, it may be
beneficial to speed up the tasks in order to create an
idle period in which the system can sleep.

There are numerous examples of systems that can
be run at multiple speeds, have a sleep state and receive
jobs with deadlines. Below is a brief description of such
a system:

e The Rockwell WINS node is
ing/computing node that has onboard environmen-
tal sensors. It gathers the data and then sends it
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over ad hoc wireless links through an onboard ra-
dio to other nodes. The onboard computation has
two parts (a) a full fledged processor that does ap-
plication as well as many of the networking proto-
cols; (b) a microcontroller that enables the sensors.
Data can be transmitted at different speeds and
each speed has a different power usage rate. The
system also has a sleep state in which the power
usage level is greatly reduced. [15, 13]

2 Previous Work

The problem of when to transition a device to a
sleep state when it is 1dle is a continuous version of
the Ski Rental problem [4]. Tt is well known that the
optimal competitive ratio that can be achieved by any
online algorithm for this problem is 2. Karlin et al. ex-
amine the problem when the length of the idle period is
generated by a known probability distribution [7]. Trani
et al. examine the generalization in which there are mul-
tiple sleep states, each with a different power usage rate
and start-up cost [5]. There has also been experimen-
tal work that investigates how to use trace data to es-
timate a probability distribution that can be used to
guide probabilistic algorithms [8, 5]. The embedded sys-
tems literature refers to the problem of deciding when to
transition to a low-power sleep state as Dynamic Power
Management. Benini, Bogliolo and De Micheli give an
excellent review of this work [1].

The Dynamic Speed Scaling problem without the
sleep state has been examined by Yao, Demers and
Shenkel (although not under that name). They give
an optimal offline algorithm for the problem. Their
algorithm plays an important role in our algorithms
for DSS-S, so we will discuss it in more depth in a
subsequent section. Yao et al. also define a simple online
algorithm called Average Rate (AVR) and prove that
the competitive ratio for AVR is between d? and 2¢d¢,
where power usage as a function of speed is a degree-d
polynomial. For each job j, let a; be its arrival time , b;
its deadline and R; the total amount of work required
to complete the job. AVR defines a speed function for
j as follows:

R;
Sj(t) = { Sj—aj

The speed of the system as a function of time s(¢) is
then 3°.s;(t). Jobs are then scheduled according to
the Earliest Deadline First (EDF) policy.

Dynamic Speed Scaling is also a well studied prob-
lem in the embedded systems literature. (See [10] and
references therein). The problem often goes by the name
Dynamic Voltage Scaling or Dynamic Frequency Scaling.

for a; <t <b;
otherwise

We adopt the more generic term Dynamic Speed Scaling
to emphasize the fact that the algoritm selects the speed
of the system to minimize power usage. Simunic ex-
amines the problem of combining Dynamic Speed Scal-
ing and Dynamic Power Management for an embedded
system called SmartBadge [14]. Another related paper
examines task scheduling (although not with multiple
speeds) so as to create idle periods for putting a device
into a sleep state [9]. This problem captures some of
the features of the problem we address here.

There are a number of issues in the real-world prob-
lem of power management that are not incorporated into
the model we use in this paper. The first of these has
to do with the latency incurred in transitioning from
one state to another. Some previous work on Dynamic
Power Management does incorporate the latency in-
volved in transitioning from the on to the sleep state
and vice versa [1]. Ramanathan et al. perform an ex-
perimental study of the latency/power tradeoff in Dy-
namic Power Management [12]. Tn [5], algorithms which
are designed using a model which does not incorporate
this latency perform very well empirically even when
this additional latency is taken into account.

The model we use here also omits the transition
time from one speed to another as well as the time
to preempt and resume jobs. In addition, we assume
here that the power function is a continuous and that
there is no upper bound on the speed of the system.
In reality, there are a finite number of speeds at which
the system can run and the algorithm must select one
of these values. Some work in the systems literature
address models in which the system can not change
instantaneously or continuously between speeds [2, 3].
Naturally, this makes the problem much harder to solve.
As aresult, much of the work on Dynamic Speed Scaling
makes all of the assumptions we make here. It remains
to determine experimentally whether these assumptions
are in fact reasonable.

3 Our Results

We prove two results in this paper.
hold for power convex power functions P(s) such that
P(s)/s is also a convex function. The convexity of
P(s) is a standard assumption in this work. The
convexity of P(s)/s is also a reasonable assumption
based on analytical models for P(s) [11]. We give an
offline algorithm for the DSS-S problem that produces
a schedule whose total energy consumption for any set
of jobs is within a factor of three of optimal. We still
do not know whether the offline problem is NP-hard.
We also present an online algorithm for DSS-S that
makes use of an online algorithm for DSS-NS. We define
the notion of a monotonic online algorithm for DSS-NS

These results



which is an algorithm that only increases its speed at
the arrival time of a job. This is a reasonable restriction
since an online algorithm will likely only plan its speed
according to the jobs it already knows about and these
are exactly the jobs whose arrival time have already
passed. The only known competitive algorithm for
DSS-NS (AVR) is monotonic. Now suppose there is
a monotonic online algorithm which is ¢q-competitive
for DSS-NS. Let f(s) = P(s) — P(0). Let ea be such
that for all z,y > 0, f(z +y) < ea(f(2) + f(y)). The
competitive ratio of our online algorithm is at most
max{ea(c1 + 1),c2 + 3,6}. Using the upper bound for
AVR given by Yao et al. , this yields an upper bound
of 24 for quadratic power functions and 540 for cubic
power functions. In the latter case, the analysis can be
optimized to give an upper bound of 193. It should be
noted that the biggest bottleneck for improvement for
DSS-S is to come up with better competitive ratios for
the version of the problem with no sleep state (DSS-
NS). The best known upper bound for DSS-NS with a
cubic power function 1s 108.

4 Problem Definition

First we define the Dynamic Speed Scaling problem with
no sleep state (DSS-NS) and then augment the model
with a sleep state. A system can execute jobs at different
speeds. The power consumption rate of the system 1s a
function P(s) of the speed s at which it runs. The input
consists of a set J of jobs. Each job j has an arrival
time a; and a deadline b;. We will sometimes refer to
the interval [a;, b;] as j’s exzecution interval. R; is the
number of units of work required to complete the job.
A schedule is a pair § = (s,job) of functions defined
over [tg,t1]. (to is the first arrival time and ¢, is the last
deadline). s(t) indicates the speed of the system as a
function of time and job(t) indicates which job is being
run at time¢. job(t) can be nullif there is no job running
at time t. A schedule is feasible if all jobs are completed
between the time of their release and deadline. That is,
for all jobs j:

by
/ s(t)6(job(t), j)dt = R;,
where §(z,y) is 1 if # = y and is 0 otherwise. The total
energy consumed by a schedule § is

21
cost(S) = / P(s(t))dt.
to
The goal is to find for any problem instance a feasible
schedule § which minimizes cost(S).
In the Dynamic Speed Scaling Problem with sleep
state (DSS-S), the system can be in one of two states:

on or sleep . A schedule & now consists of a triplet
S = (s,¢,job) where ¢(t) is defined over [tg,#1] and
indicates which state the system is in (sleep or on ) as a
function of t. The criteria for a feasible schedule is the
same as in DSS-NS except that we place the additional
constraint that if ¢(¢) = sleep , then s(t) = 0. Power
consumption is now defined by a function P(s, ¢), where
s is a non-negative real number representing the speed
of the system and ¢ is the state. The power function 1is
defined as follows:

P(s)

Pls={ PO ez

if ¢ = sleep

where P(s) is a convex function. All values are normal-
ized so that 1t costs the system 1 in energy to transition
from the sleep to the on state. The value P(0) will play
an important role in the development of our algorithms,
so we will denote it by «. This is the power rate when
the system is idle (i.e. speed is 0) and on.

Let & be the number of times that a schedule &
transitions from the sleep state to the on state. The
total energy consumed by § is

cost(S) = k + /tl P(s(1), 6(1))dt.

to

Recall that R is the total amount of work required to
complete the job. We call the system active when it is
running a job. The system is idle if it is not running
a job. Note that when the system is idle, it can be in
either the on or sleep state. However, if it is active, it
must be in the on state. For any set of mutually disjoint
intervals Z, we denote the number of intervals in Z by
|Z| and the sum of the lengths of the intervals in Z by
171

We assume throughout this paper that jobs are
preemptive. Note that the difficult part of the problem
is to determine s(t), the speed at which the system will
run. If there is a feasible schedule which uses speed s(t),
then the schedule which runs the system at speed s(#)
and uses the Earliest-Deadline-First strategy to decide
which job to run will result in a feasible schedule.

5 An Offline Algorithm

If the cost to transition from the sleep state to the
on state were zero, then the optimal speed for all jobs
would be the s that minimizes



We call this speed the critical speed and denote 1t by
Serit. If there 1s no minimum value, s..;; can be defined
to be 0 or oo depending on whether P(s)/s is increasing
or decreasing.

Suppose we consider compressing the execution of
a task so that we spend z less time running that task.
It will require more energy to complete the task since
it 1s being run at a higher power consumption level.
However, we potentially save ax since the time saved
can be spent in the sleep state. If the speed of a job
is greater than s..;;, then the energy saved is smaller
than the additional energy spent so it is not beneficial
to compress the task beyond a speed of sqp;s. On the
other hand, if the cost of transitioning back to the active
state 1s not taken into account, it is always beneficial to
compress a job which is run slower than s..;;.

Consider a system with power function P(s). This
function can be used to define a system with a sleep
state or without. A set of jobs J can be considered as
an input to both the sleep and the no-sleep version of
DSS. The lemma below relates the optimal solutions to
these two version of the problem:

LEMMA 5.1. Given a set of jobs and power function
P(s), let Sys be an optimal schedule for the version
of the problem with no sleep state. There is an optimal
solution to the version with a sleep state Sg such that
every job in Syg which runs at a speed s..;; or faster is
run at the same time and speed as in Ss.

Proof. Omitted from this version.

At this point, it is useful to discuss the optimal of-
fline algorithm for DSS-NS given by Yao et al. in [16].
We will call that algorithm OPTIMAL-SCHEDULE-NO-
SLEEP (OSNS). They show that each job in the optimal
solution 1s executed at a uniform speed although not
necessarily in a contiguous block of time. Their algo-
rithm decides on the time interval and speed in which
each job will be run in decreasing order of speed. Us-
ing their algorithm and the lemma above, we can run
the OSNS algorithm until a job is found which will be
run more slowly than s..;;. Let Jras be the set of jobs
which are determined to run at a speed s..;; or greater.
Let Z;4,: be the set of intervals during which these jobs
are run. Because of Lemma 5.1 above, an optimal of-
fline algorithm can first determine the jobs in Jrgst.
The running times and speeds for these jobs is then de-
termined according to OSNS. This will produce a set
of intervals for which the system 1is already scheduled.
We will call these scheduled intervals. For the descrip-
tion of the algorithm we will assume that all the jobs
in Jrast have been removed from J. The remainder of
this section will focus only on the remaining jobs and

will only account for the energy expended when the sys-
tem is not running a job from Jr.s:. We can readjust
the arrival times and deadlines for these remaining jobs
so that they do not occur during a scheduled interval.
Arrival times will be moved to the end of the scheduled
interval and deadlines will be adjusted to the beginning
of the scheduled interval.

Now we must decide at what speed and at what
time to run the jobs which would run more slowly
than s¢q;; in the no-sleep version of the problem. We
are guaranteed that there is a feasible solution in
which these remaining jobs run no faster than sg.;.
Our algorithm decides to run all jobs at a speed of
Serit-  Given this decisions, every algorithm will be
active and idle for the same amount of time. The
algorithm must decide during what intervals of time
the system will be idle given the arrival times and
deadlines of the jobs. When all these idle periods have
been determined, it is decided whether the system will
transition into the sleep state or not during each such
interval (depending on whether the interval has length
at least 1/a). Naturally, then it would be better to
have fewer and longer idle periods (as opposed to many
fragmented idle periods) since that gives the algorithm
the opportunity to transition to the sleep state and save
energy with fewer start-up costs.

Note that one could further improve the perfor-
mance of the algorithm by using our method only to
determine when the job is in the sleep state and then re-
running OSNS with all the sleep intervals blacked out.
This would have the effect of allowing the algorithm
to use idle intervals that are too short to transition to
the sleep state. Some jobs would then run more slowly
and save energy. However, we will bound the algorithm
without this final energy-reducing step.

A job is said to be pending at time ¢ if 1t’s arrival
time has been reached but it has not yet been completed.
All jobs are run at speed s¢r;:. We will assume that the
system is in the on state when the first job arrives. Thus
if ¢o 1s the first arrival time, the system starts running
the task with the earliest deadline among all those which
arrive at time ty. The subsequent events are handled
according to the algorithm given in the figures below.
The basic idea is that while the algorithm is active it
stays active, running jobs until there are no more jobs
to run. When it becomes idle, it stays idle as long as it
possibly can until it has to wake-up in order to complete
all jobs by their deadline at a speed of s.pjz.

THEOREM 5.1. If the power function P(s) and P(s)/s
are both convex, then the algorithm Left-To-Right
achieves an approximation ratio of 3.

Before proving Theorem 5.1, we prove the following



LEFTTORIGHT:FINDIDLEINTERVALS (J)
(1) if a new job j arrives

(2) if the system is currently
running a job
(3) Run the job with the
earliest deadline
(4) if the system is not currently
running a job
(5) SETWAKEUPTIME()

(6) if the system completes a job

(7) if there are pending jobs,

(8) work on the pending job
with the earliest deadline

(9) if there are no pending jobs,

(10) SETWAKEUPTIME()

(11)if wake-up time is reached
(12) Start working on pending job
with earliest deadline.
(13)if the beginning of a scheduled
interval is reached
Process the jobs from Z;,;; which
were scheduled for this interval
(15)if the end of a scheduled interval
is reached
Complete lines (7)-(10)

(14)

(16)

useful lemma. In the proof of the lemma as well as
the proof of the theorem, we let Soppr be the optimal
schedule for a particular input. Let Sprr be the
schedule produced by the Left-To-Right algorithm on
the same input. Let Popr (resp. Prrr) denote the
set of maximal intervals during which the system is in
the sleep state for Sopr (resp. Srrr). Let Dopr (resp.
Dirr) denote the set of maximal intervals during which

the system is idle in Sopr (resp. Sirr).

LEMMA 5.2. There is no single interval in Popr which
contains two intervals in Drrg.

SETWAKEUPTIME()
Find the largest time {,, such that
it is feasible to keep the schedule
determined so far, have the system
asleep for the interval [¢,t,] and
complete all jobs in J — Jfast
by their deadlines at a speed of 5.t
or less.
Set the wake-up time to be 7, .

Proof. Suppose that there is an interval I € Popr
which contains two intervals Ay, As € Drrgr. Suppose
without loss of generality that A; is to the left of As.
Consider the first job j which is run after A; and before
As. Tt must be the case that either j’s release time 1s
before I begins or its deadline is after I completes. This
is because Sppr 1s a feasible schedule and can not be
in the sleep state during all of j’s execution interval.
If j’s release time is before I began, then its release
time is also before the left endpoint of A;. This means
that it would have been run at the beginning of interval
Ay in Sprg since the algorithm never idles as long as
there are pending jobs in the system. Similarly, if j’s
deadline is after the end of I, its deadline is also after
the end of As. This means that Left-To-Right would
have waited to run the task so that it completes just
before the right endpoint of As due to the fact that it
delays becoming active until it is necessary in order to
have a feasible schedule. Thus, 1t is impossible that any
job is run after A; and before A,. O

It will be useful to isolate certain portions of the
energy expenditure for a schedule & = (s,¢,job) as
follows:

1. The energy expended in running jobs aside from the
a per time unit keeping the system in the on state:

run(S) :/IP(s(t))—adt.

to

2. The cost to keep the system in the on state while
the system is active. Let d,(t) = 1 if s(t) > 0 and
0 otherwise.

21
active(S):/ ads (t)dt.
to

3. The cost to keep the system active or shut-down
and wake-up the system during the idle periods
(depending on which action is the most energy
efficient). Tet D be the set of idle periods for the
schedule S.

idle(S) = > _ min(all], 1).

IeD

4. The cost to keep the system in the on state while
the system is on

on(S) = / " ad(6(1), on )dt.

to

5. The cost to wake-up the system at the end of each
sleep interval. If 7 is the set of maximal intervals
in which the algorithm is in the sleep state, this is
just the number of intervals in Z.



Fix a problem instance. We will prove the following
three lemmas from which Theorem 5.1 follows easily.

LEMMA 5.3. active(Sirr) < active(Sopr).

LEMMA 5.4.

run(Sprr) < run(Sopr) + active(Sopr).

LEMMA 5.5.
idle(SLTR) < on(SopT) + 3sleep(SopT).

Proof of Theorem 5.1

active(Srrr) + run(Sirr)

+idle(Srrr)

< run(Sopr) + 2active(Sopr)
+on(Sopr) + 3sleep(Soprr)

< run(Sopr) + 3on(Sorr)
+3sleep(Sopr)

< 3cost(Sopr)

COSt(SLTR) =

The first inequality uses the fact that for any schedule
S, cost(S) = active(S) +run(S) + idle(S). The next
inequality comes from applying Lemmas 5.3, 5.4 and
5.5. The next inequality follows from the fact that for
any schedule S, active(S) < on(S). This just follows
from the fact that if a system is active then 1t has to be
on. The final inequality follows from the fact that for
any schedule §, cost(S) = on(S) + run(S) + sleep(S).
O

We now give the proofs for the three lemmas stated
above.

Proof of Lemma 5.3. We must establish that
the optimal algorithm will never run any job faster
than scr;¢. At this point, it is necessary to review
the optimal offline algorithm OSNS for the no-sleep
version of the problem. They define the intensity of
an interval I = [z,2/] to be g(I) = Y R;/(2' — 2),
where the sum is taken over all jobs j with [a;,b;] C
[z,2']. They prove that the optimal algorithm is to
identify the interval I of maximal intensity called the
critical interval. The algorithm schedules those jobs
whose interval of execution is contained in I during
this interval at a speed of g(7). This is feasible using
the Earliest-Deadline-First policy or else there must
be an interval of greater intensity. The interval 7
is blacked out so that no other jobs can be run at
this time, all scheduled jobs are removed from J and

the algorithm iterates by picking the next interval of
maximum intensity.

Recall that we can assume that all the jobs which
would run at a greater speed than s..;; in the no-
sleep version of the problem have been scheduled and
removed. Thus, we are only referring to the jobs that
would run at a speed of s..;+ or less in the no-sleep
version of the problem. Suppose that the optimal
schedule has a job which runs at a speed greater than
Serit- We can think of the optimal algorithm as running
in two parts: first determine the optimal sleep intervals
for the system. Then run OSNS with these periods
blacked out. Since OSNS decides on the execution time
and speed for the jobs in reverse order of speed, we
know that the first critical interval chosen has intensity
greater than s..;;. Let this critical interval be [a, ],
where a is the release time of some job and b is the
deadline of some job. It must be the case that [a, )]
has a non-zero intersection with some sleep interval
because these jobs are run at a speed at most s..;; in
the absence of sleep intervals. Suppose we decrease this
sleep interval by ¢ and use this extra time to run one
of the jobs. Since it is possible to schedule jobs using
EDF at a uniform speed in [a,b], it must be the case
that that the interval of execution of some job contains
the period of length ¢ that we have just freed up. The
new speed of the job will be s’ —¢’. Call this job j. The
algorithm will spend less energy in runnin j but may
have to spend some extra energy in keeping the system
on for an additional €. This extra energy will be at most
ae. In the worst case, the total energy will decrease by
at least

R; -

Since P(s)/s is convex and s’ is larger than the mini-
mum value, this energy savings will be positive. O

Proof of Lemma 5.4. We can think of the opti-
mal algorithm as running in two parts: first determine
the optimal sleep intervals for the system. Then run
OSNS with these periods blacked out. Since OSNS runs
each individual job at a uniform speed (although pos-
sibly not in a contiguous interval), we will assume that
the optimal algorithm does not vary the speed of the
system while it is running a single job. Consider a job j
with workload R;. Suppose that the optimal algorithm
runs this job at speed s;. The power expended while
the job is running is P(s;)(R;/s;). The speed at which
Left-To-Right runs the job is s¢;; which minimizes this
value. Thus we have that

R;

Serit

run(Sprr) = Z[P(Scrit) — P(0)]
JET



Z P(Scrit) i

<
- jeaq Serit
R.
< ZP(Sj)f
jeg 7

= run(Sopr) + active(Sopr).

O

Proof of Lemma 5.5. Recall that Dyrgr is the
set of maximal intervals in which the system 1is idle
under Left-To-Right’s schedule and Popr is the set of
maximal intervals during which the system is in the
sleep state in the optimal schedule. First consider the
intervals in Drprr which have no intersection with any
interval in Popr. The sum of the lengths of these
intervals is at most the total length of time that the
optimal algorithm is in the on state. Since the cost of
any interval is bounded by « times its length, the cost
of all these intervals is at most on(Sopr).

Next consider the intervals in Prrr which have a
non-zero intersection with some interval in Popr. By
Lemma 5.2, no more than one interval from Dyrp can
be contained a single interval from Popr. Thus, each
interval from Popr can intersect at most three intervals
from Dyrr. Thus, the number of intervals in Dyrg
which have a non-zero intersection with an interval in
Popr is at most three times the number of intervals in
Popr which is exactly 3sleep(Sopr). O

6 An Online Algorithm

The online agorithm for DSS-S which we present here
makes use of an monotonic online algorithm A for DSS-
NS. At this point in time, the only known competitive
algorithm for DSS-NS is the Average Rate algorithm
given by Yao et al. which does have the property
of being monotonic. However, we will phrase our
algorithm so that it can make use of any competitive
monotone online algorithm for DSS-NS. We will use
s4(t) to denote the speed of the system as a function of
time chosen by A on a given input.

Our algorithm runs in two different modes: fast
mode and slow mode. The algorithm is in slow mode if
and only if it is feasible to complete all pending jobs by
their deadline at a speed of s.,4;. It maintains two speed
functions Sgow (¢) and sgqs:(t). The speed of the system
is always Sgow(t) + Spast(t) evaluated at the current
time. Sfqs¢(t) is chosen as follows:

Sfast(t) = { SA Q

Ssiow 18 always scpie or 0. To specify s(t), it remains
to determine when Sg10 (1) i8 Sepie and when it is 0. The
algorithm maintains a current plan for s, (¢) and only

when in fast mode
when in slow mode

alters this plan at three types of events:

1. A new job arrives and the algorithm remains in
slow mode.

2. The algorithm becomes active and remains in slow
mode.

3. The algorithm transitions from fast mode to slow
mode.

In each case sg10p (1) is set as follows. Let R denote the
remaining work of all pending jobs in the system.

Sslow (t) — { Serit for teurrent S t S R/Scrit
0 for t > R/Scrit

We define the notion of the excess at time t to
help in determining when the algorithm needs to switch
modes. This value is simply the total amount of work
that would not get completed by its deadline if the
algorithm were to use speed S¢q;;. This can easily be
computed by simulating the system at speed s¢;; until
all the deadlines of pending jobs have been reached. If
the algorithm is in slow mode, 1t just needs to check
whenever a new job arrives that the excess is 0 to see
whether it needs to transition to fast mode. When the
algorithm transitions to fast mode (or whenever a new
job arrives when it is in fast mode), it computes a slow-
down time which is the next time that the stystem can
transition to slow mode unless new jobs arrive. This 1s
the smallest value ¢, such that

ts
/ sa(t) > excess at the current time.

teurrent

If the system becomes idle, it maintains a wake-up
time t,, which is the latest time such that all pending
jobs can be completed at a speed of s..;; if it wakes
up at time f,. If a new job arrives, it may have to
update t,, to some earlier point in time. If the new job
is large enough it may have to wake up immediately
and transition to fast mode. When the system becomes
idle, it will transition to the sleep state if the idle period
lasts at least time 1/«. Since the algorithm postpones
processing any jobs until it is absolutely necessary in
order to complete all pending at speed s.n;t, we call
the algorithm PROCRASTINATOR. The algorithm is
defined in the figures below. The figures show how
PROCRASTINATOR determines the functions $gie (1)
and Sgqs¢(t).  The algorithm maintains a projected
version of these functions and then periodically updates
it decision. The speed of the system at the current time
is always Sslow (tcurrent) + Sfast(tcurrent)~ All jObS are
scheduled by the EDF policy.



PROCRASTINATOR:DETERMINESPEED (J)
(1) if a new job j arrives

(2) if the system is in fast mode
(3) SETSLOWDOWNTIME ()
(4) if the system is in slow mode
or not currently running a job
(5) if pending jobs can be
completed at rate 5.,
(8) if system is not currently
running a job,
(7 SETWAKEUPTIME()
(8) else if pending jobs can
not be completed at rate s
(9) Set wake-up time to the
current time ¢
(10) Change to fast mode.
(11) SETSLOWDOWNTIME ()
(12) Sfast(t) = SA(t)

for all ¢ > t.yrrent-
(13)if the system completes a job

(14) if there are no pending jobs,
(15) Set timer to 1/a.

(16)if wake-up time is reached

(17) if system is in sleep state
(18) Transition to on state.

(19) Start working on pending job
with earliest deadline.

(20) Clear timer.

(21)if timer expires,

(22) Transition to sleep state.
(23)if the slowdown time is reached,
(24) Transition to slow mode.

(25) Set Sfqst(t) =0 for all ¢ > teuprent-
(26) RESET()

For the lemmas that follow, Sp will denote the
schedule for PROCRASTINATOR. Let Pp denote the set
of maximal intervals during which the system is in the
sleep state for Sp. Let Dp denote the set of maximal
intervals during which the system idle in Sp.

LEMMA 6.1. There is no single interval in Popr which
contains two intervals in Dp.

Proof. Similar to the proof of Lemma 5.2 except
for one case. This is the case where job j’s deadline is
after I. If the algorithm is in slow mode when it wakes
up and starts work on j, the argument is the same as in
Lemma 5.2. The only case that needs to be addressed
is if the arrival of job j causes the algorithm to wake-
up in fast mode. We will argue that in this case, the

SETWAKEUPTIME()
Find the largest time ?,, such that
it is feasible to have the system
sleep until time ?¢,, complete all
pending jobs by their deadlines at a
speed of s..;; or less.
Set the wake-up time to be i,.

SETSLOWDOWNTIME ()
Compute F/, the excess at the
current time.
Set the slowdown time to be the
minimum value for #{; which
satisfies

[l sut)> E.

teurrent =

RESET()
Let R be the total amount of work
left on pending jobs
Set Ssiow (1) = Serit
for tcurrent S t S tcurrent + R/Scrit
Set S50 (1) =0 for
t > teurrent + R/Scrit




algorithm must stay busy until j’s deadline.

At any point the algorithm is in fast mode define
the excess at time ¢ to be the amount of work that would
not get completed if the algorithm performed the EDF
algorithm at speed s¢p;;. The algorithm is in fast mode
if and only if the excess is greater than 0. As long
as the excess is greater than 0, there are jobs in the
system and the system stays active. Suppose that the
excess reaches 0 at some time ¢ € [a;,b;]. If there is an
idle period anywhere in [Z, b;] then that time could have
been used to work on j at speed s..;; which means that
the excess would have reached 0 before time £. O

LEMMA 6.2. active(Sp) < active(Sopr).

Proof. Consider the the schedule Sy g produced by
the optimal offline algorithm for the no-sleep version of
the problem. Recall that Z;,,; is defined to be all those
intervals in Syg in which the system is running at a
speed of s..;; or higher. For an interval I € Z;,,, let
Ry denote the total work for those jobs whose execution
interval is contained in 7. That is,

> R

Jllaj,bs1CT

Ry =

Any algorithm must get at least Ry work done in
interval 7. As established in Lemma 5.1 Sopr gets
exactly R; work done in interval 1.

During the remaining time, whenever Procrastina-
tor is active, it is running at a speed at least sqp;;. In the
proof of Lemma 5.3, we established that outside inter-
vals in calif,s:, the optimal never runs faster than scp;;.
Therefore, Procrastinator spends less time running jobs
than the optimal algorithm. O

LEMMA 6.3. idle(Sp) < QOH(SOPT) + GSleep(SopT).

Proof. Consider the algorithm which we will call
P-OPT (for Procrastinator-Optimal) which has the
same set of active and idle periods as Procrastinator
but is told in advance the length of each idle period.
Such an algorithm can make the optimal decision as
to whether or not to transition to the sleep state at
the beginning of an idle period. Using Lemma 6.1
instead of Lemma 5.2, and an identical argument to
that used in Lemma 5.5, we get that idle(Sp_opr) <
on(SopT) + 3sleep(SopT).

Since Procrastinator uses the algorithm which shuts
down as soon as the cost of staying active equals the cost
of powering up, we know that for any idle period, the
cost of that period for Procrastinator is at most twice
the cost for that period to P-OPT. Thus, we have that
Qidle(Sp_opT) > idle(Sp). O

THEOREM 6.1. Assume that P(s) and P(s)/s are con-
ver functions. Let ¢i be the competitive ratio for A,
a monotonic algorithm for the DSS-NS problem. Let
f(z) = P(x)— P(0). Let ca be such that for all x,y > 0,
flx +y) < ca(f(x) + fy)). The competitive ratio of
Procrastinator is at most max{ca(c1 + 1),¢a+ 3,6}.

Proof. Fix an input sequence [J. We will refer to
the schedule produced by Procrastinator (resp. Opti-
mal, Left-To-Right, A) by Sp (resp. Sopr, SLTR, SA4)-
Let sp(t) denote the speed of the system as a function of
time under Procrastinator’s schedule. Let sg,,:(t) and
Ssiow (t) be as defined in the algorithm description for
PROCRASTINATOR.

We first address the energy spent by Procrastinator
above and beyond the o power rate to keep the system
on. Since PROCRASTINATOR waits at least as long to
wake-up as Left-to-Right and it runs at least as fast as
Left-To-Right while it is active, we know that sg0y (1) <
sprr(t). By definition, we know that szqs(t) < sa(?)
for all ¢.

21

run(Sp) = t f(s(t))dt
< [ ealsgaae(t) + Floton ()
< oo [ ssanirtes [ sorania
< corun(8Sa) + corun(SrrR)
< crearun(Sopr)

+ea(run(Sopr) + active(Sopr))

Now we turn to the energy spent in keeping the
system on and in waking it up after sleep intervals.
Using Lemmas 6.2 and 6.3,
active(Sp) + idle(Sp)
on(Sopr) + 2active(Sopr) + 6sleep(Sopr))
3on(SopT) + GSleep(SopT)

Combining with the above bound we get that

cost(Sp) = run(Sp)+ active(Sp) + idle(Sp)
< ci(ea + Drun(Sopr)
+(c2 + 3)on(Sopr) + 6sleep(Sopr)
< max{ei(ca + 1), 0+ 3,6}cost(Sopr)
O
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