Flip-N-Write: A Simple Deterministic Technique to Improve PRAM Write Performance, Energy and Endurance

Sangyeun Cho Hyunjin Lee

Presenter: Brian Wongchaowart March 17, 2010

Motivation

Suppose that you had a rewritable storage medium with the following characteristics:

- The values of individual bits can be changed independently.
- Updating a bit from 0 to 1 or from 1 to 0 is a relatively expensive operation (in time, energy, or both), compared to the cost of leaving a bit unchanged.

How can you minimize the cost of updating the information stored in this medium?

Practical Justification: PRAM

- Phase-change random access memory (PRAM) may soon replace flash memory and DRAM in many applications.
- Each memory cell contains a material that has two phases with very different electrical properties.
- An "amorphous phase" exhibits high resistivity, while a "crystalline phase" has much lower resistivity.
- Reading the bit value stored in a cell consists of sensing its resistivity (a fast, low-power operation).

- In order to change the bit value stored in a PRAM cell, the phase-change material must be brought into a different phase by heating.
- Heating the phase-change material to its crystallization temperature for a sufficiently long period of time causes it to assume its crystalline state.
- Heating it to a yet higher temperature for a short period of time makes the material amorphous.
- Both of these operations require high-power current pulses.

Worst-Case Number of Bit Updates

- Suppose that the storage medium is accessed as an array of *n*-bit words, where *n* is even.
- Each array element must be able to store one of 2ⁿ different logical word values, but the number of bits used to physically represent each logical word and the mapping between the logical word values and their physical representations is unspecified.
- We now consider the problem of limiting the worst-case number of physical bit update operations required to store an arbitrary logical word value to an array element (making the simplifying assumption that updating a bit from 0 to 1 and from 1 to 0 have the same cost).

- If each array element is physically stored as a bit string of length n, then there must be a one-to-one mapping between the 2ⁿ logical word values that can be stored in the array element and the 2ⁿ possible bit strings of length n that can reside on the storage medium.
- In the worst-case, the unique physical representation of a new logical word value to be stored will be the bitwise complement of the bit string currently stored in the medium, meaning that all *n* bits must be updated.
- Thus limiting the worst-case number of bit update operations requires using at least n+1 bits to store one of 2ⁿ logical word values.

Hamming WEM Codes

- The problem of limiting the worst-case number of bit update operations in this model was formalized in 1989 by Ahlswede and Zhang as a problem in coding theory.¹
- We would like to store *M* different messages (logical word values) in a storage medium called a WEM (write-efficient memory).
- Each message m_i, for 1 ≤ i ≤ M, is associated with a subset C_i of {0,1}ⁿ (the bit strings of length n), such that C_i and C_j are disjoint for i ≠ j.
- Any member of *C_i* is a valid physical representation of message *m_i* when stored on the medium.

¹R. Ahlswede and Z. Zhang, "Coding for Write-Efficient Memory," Information and Computation 83, no. 1 (1989): 80–97...

Hamming WEM Codes

- Suppose that the medium currently holds the bit string a ∈ C_i.
- In order to update the message stored on the medium from m_i to m_j, some bit string b ∈ C_j must be written to the medium.
- Because we want to minimize the number of bit update operations required, we always choose the bit string b ∈ C_j that minimizes the Hamming distance between a and b.
- Our objective is to design a collection {C₁, C₂,..., C_M} of pairwise-disjoint subsets of {0,1}ⁿ such that given a bit string a ∈ C_i for arbitrary i, it is possible to transform a into some bit string b ∈ C_j using no more than D bit update operations for arbitrary j. This is called an (n, M, D) Hamming WEM code.

Flip-N-Write

- We will restrict our attention to the case where M = 2ⁿ for a positive even integer n and each message is stored on the medium as a bit string of length n + 1.
- It will be seen that Flip-N-Write is the natural $(n + 1, 2^n, n/2)$ Hamming WEM code for this setting.
- Flip-N-Write was indirectly described by Ahlswede and Zhang in 1989 ("the collection of cosets of a perfect *linear* channel code is a perfect WEM code") and was later independently rediscovered by Sangyeun Cho as a practical technique for PRAM.

Derivation of Flip-N-Write

- We first show that the best achievable upper bound on the worst-case number of bit update operations is n/2, given the assumption that we want to be able to store 2ⁿ different messages, where n is even, using n + 1 bits.
- We then show that the collection of cosets of a binary repetition code of length n + 1—that is, the perfect binary linear channel code consisting of just the two codewords 0ⁿ⁺¹ and 1ⁿ⁺¹—is a (n + 1, 2ⁿ, n/2) Hamming WEM code.

Lemma

$$\sum_{k=0}^{n/2} \binom{n+1}{k} = 2^n.$$

Proof. Recall that $\binom{n}{k} = \binom{n}{n-k}$. Then

$$\sum_{k=0}^{n/2} \binom{n+1}{k} = \sum_{k=0}^{n/2} \binom{n+1}{n+1-k} = \sum_{k=n/2+1}^{n+1} \binom{n+1}{k}.$$

But since

$$\sum_{k=0}^{n/2} \binom{n+1}{k} + \sum_{k=n/2+1}^{n+1} \binom{n+1}{k} = \sum_{k=0}^{n+1} \binom{n+1}{k} = 2^{n+1},$$

it follows that

$$\sum_{k=0}^{n/2} \binom{n+1}{k} = \frac{2^{n+1}}{2} = 2^n.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Theorem

Any $(n + 1, 2^n, D)$ Hamming WEM code satisfies $D \ge n/2$. Proof.

- Suppose that the medium currently holds the bit string a ∈ C_i.
- The number of bit strings of length *n* + 1 within Hamming distance *D* of *a* is exactly

$$\binom{n+1}{0} + \binom{n+1}{1} + \dots + \binom{n+1}{D} = \sum_{k=0}^{D} \binom{n+1}{k}.$$

In order for it to be possible to transform a into some bit string b ∈ C_j using no more than D bit update operations for 1 ≤ j ≤ 2ⁿ, we therefore require that ∑^D_{k=0} (ⁿ⁺¹_k) ≥ 2ⁿ.

• But since $\sum_{k=0}^{n/2} \binom{n+1}{k} = 2^n$ by the preceding lemma, $\sum_{k=0}^{D} \binom{n+1}{k} \ge 2^n$ implies $D \ge n/2$.

- We now make a critical observation: if every bit string c ∈ {0,1}ⁿ⁺¹ is within Hamming distance D of some bit string b ∈ C_j, then it immediately follows that some bit string b ∈ C_j is within Hamming distance D of any bit string a ∈ C_i currently stored in the medium.
- A perfect binary linear channel code of length n + 1 with a minimum Hamming distance of 2D + 1 between codewords guarantees that every bit string $c \in \{0, 1\}^{n+1}$ is within Hamming distance D of exactly one codeword.
- This means that if we can find a collection of 2^n pairwise-disjoint perfect binary linear codes of length n + 1 with a minimum Hamming distance of 2(n/2) + 1 = n + 1 between codewords, then we immediately have a $(n + 1, 2^n, n/2)$ Hamming WEM code.

What subsets of $\{0,1\}^{n+1}$ have a minimum Hamming distance of n+1 between any pair of members?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Answer: The set consisting of any bit string of length n + 1 and its bitwise complement has a minimum Hamming distance of n + 1 between any pair of its members.
- These 2ⁿ subsets of {0,1}ⁿ⁺¹ are called the *cosets* of the binary repetition code {0ⁿ⁺¹, 1ⁿ⁺¹} because they are the sets of the form {c ⊕ 0ⁿ⁺¹, c ⊕ 1ⁿ⁺¹}, for all c ∈ {0,1}ⁿ⁺¹, where ⊕ denotes the bitwise exclusive OR operator.
- For ease of decoding, we associate the coset $\{c, c \oplus 1^{n+1}\}$ with message c $(0 \le c \le 2^n 1)$ when the leading bit of c is 0.

Theorem

The collection of cosets of a binary repetition code of length n + 1 is a $(n + 1, 2^n, n/2)$ Hamming WEM code.

Proof.

- There are 2ⁿ cosets of {0ⁿ⁺¹, 1ⁿ⁺¹} because every bit string in {0,1}ⁿ⁺¹ belongs to a coset and each coset has exactly two members. The cosets are pairwise disjoint because two cosets that share a member are obviously identical.
- The spheres of radius n/2 centered at the members of a coset both contain $\sum_{k=0}^{n/2} \binom{n+1}{k} = 2^n$ bit strings, but these two spheres do not intersect because the distance between their centers is exactly n + 1. Thus the union of the two spheres contains all 2^{n+1} bit strings in $\{0, 1\}^{n+1}$, and each bit string is within Hamming distance n/2 of the center of one of the spheres (a member of the coset).

うっつ 川 山 マ マ マ マ マ マ マ マ マ

Performance of Flip-N-Write

If each of the 2^n logical word values is equally likely to be written, then the probability of having to update k positions in the bit string currently stored in the medium is $\binom{n+1}{k}/2^n$ for $0 \le k \le n/2$. The expected number of bit updates is thus $\sum_{k=0}^{n/2} k \binom{n+1}{k}/2^n$.

n	$\sum_{k=0}^{n/2} \frac{k\binom{n+1}{k}}{2^n}$	$\sum_{k=0}^{n/2} \frac{k\binom{n+1}{k}}{n \cdot 2^n}$
8	3.27	0.409
16	6.83	0.427
32	14.19	0.443
64	29.27	0.457
128	59.96	0.468
256	122.10	0.477
512	247.46	0.483

Summary of Flip-N-Write

- We need to represent 2ⁿ different logical word values, where n is an even integer.
- Each logical word value is given two different physical representations of length n + 1 bits: a nonflipped representation in which the word is extended by the addition of a 0-bit, and a flipped representation that is the bitwise complement of the nonflipped representation.
- Given any bit string a of length n + 1 currently stored in the medium and any logical word value b (the new value to be written), then exactly one of the two physical representations of b is within Hamming distance n/2 of a.

${\sf Questions}/{\sf Comments}$