
Flip-N-Write: A Simple Deterministic Technique
to Improve PRAM Write Performance, Energy

and Endurance

Sangyeun Cho Hyunjin Lee

Presenter: Brian Wongchaowart
March 17, 2010

Motivation

Suppose that you had a rewritable storage medium with the
following characteristics:

• The values of individual bits can be changed independently.

• Updating a bit from 0 to 1 or from 1 to 0 is a relatively
expensive operation (in time, energy, or both), compared to
the cost of leaving a bit unchanged.

How can you minimize the cost of updating the information stored
in this medium?

Practical Justification: PRAM

• Phase-change random access memory (PRAM) may soon
replace flash memory and DRAM in many applications.

• Each memory cell contains a material that has two phases
with very different electrical properties.

• An “amorphous phase” exhibits high resistivity, while a
“crystalline phase” has much lower resistivity.

• Reading the bit value stored in a cell consists of sensing its
resistivity (a fast, low-power operation).

• In order to change the bit value stored in a PRAM cell, the
phase-change material must be brought into a different phase
by heating.

• Heating the phase-change material to its crystallization
temperature for a sufficiently long period of time causes it to
assume its crystalline state.

• Heating it to a yet higher temperature for a short period of
time makes the material amorphous.

• Both of these operations require high-power current pulses.

Worst-Case Number of Bit Updates

• Suppose that the storage medium is accessed as an array of
n-bit words, where n is even.

• Each array element must be able to store one of 2n different
logical word values, but the number of bits used to physically
represent each logical word and the mapping between the
logical word values and their physical representations is
unspecified.

• We now consider the problem of limiting the worst-case
number of physical bit update operations required to store an
arbitrary logical word value to an array element (making the
simplifying assumption that updating a bit from 0 to 1 and
from 1 to 0 have the same cost).

• If each array element is physically stored as a bit string of
length n, then there must be a one-to-one mapping between
the 2n logical word values that can be stored in the array
element and the 2n possible bit strings of length n that can
reside on the storage medium.

• In the worst-case, the unique physical representation of a new
logical word value to be stored will be the bitwise complement
of the bit string currently stored in the medium, meaning that
all n bits must be updated.

• Thus limiting the worst-case number of bit update operations
requires using at least n + 1 bits to store one of 2n logical
word values.

Hamming WEM Codes

• The problem of limiting the worst-case number of bit update
operations in this model was formalized in 1989 by Ahlswede
and Zhang as a problem in coding theory.1

• We would like to store M different messages (logical word
values) in a storage medium called a WEM (write-efficient
memory).

• Each message mi , for 1 ≤ i ≤ M, is associated with a subset
Ci of {0, 1}n (the bit strings of length n), such that Ci and Cj

are disjoint for i 6= j .

• Any member of Ci is a valid physical representation of
message mi when stored on the medium.

1R. Ahlswede and Z. Zhang, “Coding for Write-Efficient Memory,”
Information and Computation 83, no. 1 (1989): 80–97.

Hamming WEM Codes

• Suppose that the medium currently holds the bit string a ∈ Ci .

• In order to update the message stored on the medium from mi

to mj , some bit string b ∈ Cj must be written to the medium.

• Because we want to minimize the number of bit update
operations required, we always choose the bit string b ∈ Cj

that minimizes the Hamming distance between a and b.

• Our objective is to design a collection {C1,C2, . . . ,CM} of
pairwise-disjoint subsets of {0, 1}n such that given a bit string
a ∈ Ci for arbitrary i , it is possible to transform a into some
bit string b ∈ Cj using no more than D bit update operations
for arbitrary j . This is called an (n,M,D) Hamming WEM
code.

Flip-N-Write

• We will restrict our attention to the case where M = 2n for a
positive even integer n and each message is stored on the
medium as a bit string of length n + 1.

• It will be seen that Flip-N-Write is the natural (n + 1, 2n, n/2)
Hamming WEM code for this setting.

• Flip-N-Write was indirectly described by Ahlswede and Zhang
in 1989 (“the collection of cosets of a perfect linear channel
code is a perfect WEM code”) and was later independently
rediscovered by Sangyeun Cho as a practical technique for
PRAM.

Derivation of Flip-N-Write

• We first show that the best achievable upper bound on the
worst-case number of bit update operations is n/2, given the
assumption that we want to be able to store 2n different
messages, where n is even, using n + 1 bits.

• We then show that the collection of cosets of a binary
repetition code of length n + 1—that is, the perfect binary
linear channel code consisting of just the two codewords 0n+1

and 1n+1—is a (n + 1, 2n, n/2) Hamming WEM code.

Lemma

n/2∑
k=0

(
n + 1

k

)
= 2n.

Proof.
Recall that

(n
k

)
=
(n
n−k

)
. Then

n/2∑
k=0

(
n + 1

k

)
=

n/2∑
k=0

(
n + 1

n + 1− k

)
=

n+1∑
k=n/2+1

(
n + 1

k

)
.

But since

n/2∑
k=0

(
n + 1

k

)
+

n+1∑
k=n/2+1

(
n + 1

k

)
=

n+1∑
k=0

(
n + 1

k

)
= 2n+1,

it follows that
n/2∑
k=0

(
n + 1

k

)
=

2n+1

2
= 2n.

Theorem
Any (n + 1, 2n,D) Hamming WEM code satisfies D ≥ n/2.

Proof.

• Suppose that the medium currently holds the bit string a ∈ Ci .

• The number of bit strings of length n + 1 within Hamming
distance D of a is exactly(

n + 1

0

)
+

(
n + 1

1

)
+ · · ·+

(
n + 1

D

)
=

D∑
k=0

(
n + 1

k

)
.

• In order for it to be possible to transform a into some bit
string b ∈ Cj using no more than D bit update operations for

1 ≤ j ≤ 2n, we therefore require that
∑D

k=0

(n+1
k

)
≥ 2n.

• But since
∑n/2

k=0

(n+1
k

)
= 2n by the preceding lemma,∑D

k=0

(n+1
k

)
≥ 2n implies D ≥ n/2.

• We now make a critical observation: if every bit string
c ∈ {0, 1}n+1 is within Hamming distance D of some bit
string b ∈ Cj , then it immediately follows that some bit string
b ∈ Cj is within Hamming distance D of any bit string a ∈ Ci

currently stored in the medium.

• A perfect binary linear channel code of length n + 1 with a
minimum Hamming distance of 2D + 1 between codewords
guarantees that every bit string c ∈ {0, 1}n+1 is within
Hamming distance D of exactly one codeword.

• This means that if we can find a collection of 2n

pairwise-disjoint perfect binary linear codes of length n + 1
with a minimum Hamming distance of 2(n/2) + 1 = n + 1
between codewords, then we immediately have a
(n + 1, 2n, n/2) Hamming WEM code.

What subsets of {0, 1}n+1 have a minimum Hamming distance of
n + 1 between any pair of members?

• Answer: The set consisting of any bit string of length n + 1
and its bitwise complement has a minimum Hamming
distance of n + 1 between any pair of its members.

• These 2n subsets of {0, 1}n+1 are called the cosets of the
binary repetition code {0n+1, 1n+1} because they are the sets
of the form {c ⊕ 0n+1, c ⊕ 1n+1}, for all c ∈ {0, 1}n+1, where
⊕ denotes the bitwise exclusive OR operator.

• For ease of decoding, we associate the coset {c , c ⊕ 1n+1}
with message c (0 ≤ c ≤ 2n − 1) when the leading bit of c is
0.

Theorem
The collection of cosets of a binary repetition code of length n + 1
is a (n + 1, 2n, n/2) Hamming WEM code.

Proof.

• There are 2n cosets of {0n+1, 1n+1} because every bit string in
{0, 1}n+1 belongs to a coset and each coset has exactly two
members. The cosets are pairwise disjoint because two cosets
that share a member are obviously identical.

• The spheres of radius n/2 centered at the members of a coset

both contain
∑n/2

k=0

(n+1
k

)
= 2n bit strings, but these two

spheres do not intersect because the distance between their
centers is exactly n + 1. Thus the union of the two spheres
contains all 2n+1 bit strings in {0, 1}n+1, and each bit string is
within Hamming distance n/2 of the center of one of the
spheres (a member of the coset).

Performance of Flip-N-Write

If each of the 2n logical word values is equally likely to be written,
then the probability of having to update k positions in the bit
string currently stored in the medium is

(n+1
k

)
/2n for 0 ≤ k ≤ n/2.

The expected number of bit updates is thus
∑n/2

k=0 k
(n+1

k

)
/2n.

n
∑n/2

k=0

k(n+1
k)

2n
∑n/2

k=0

k(n+1
k)

n·2n
8 3.27 0.409

16 6.83 0.427
32 14.19 0.443
64 29.27 0.457

128 59.96 0.468
256 122.10 0.477
512 247.46 0.483

Summary of Flip-N-Write

• We need to represent 2n different logical word values, where n
is an even integer.

• Each logical word value is given two different physical
representations of length n + 1 bits: a nonflipped
representation in which the word is extended by the addition
of a 0-bit, and a flipped representation that is the bitwise
complement of the nonflipped representation.

• Given any bit string a of length n + 1 currently stored in the
medium and any logical word value b (the new value to be
written), then exactly one of the two physical representations
of b is within Hamming distance n/2 of a.

Questions/Comments

