
An Energy Aware Model of Computation, and
Computation with Energy-Time Trade-Offs:

Models, Algorithms and Lower-Bounds

Brad D. Bingham Mark R. Greenstreet

Presenter: Brian Wongchaowart
April 21, 2010



Objective: Minimize ET α

• Main thesis of this paper: ETα is a measure of the goodness
of an algorithm.

• Suppose that for some input, an algorithm requires E units of
energy and T units of time.

• If power as a function of speed is P(s) = sβ, then running the
algorithm c times faster increases energy by a factor of cβ/c
(E = Pt).

• In other words, Tα decreases by a factor of 1/cα, while E
increases by a factor of cα, where α = β − 1. Thus ETα

remains constant under speed scaling, but depends on the
algorithm and input size.



Knowing ETα is useful whether the objective is time, energy, or
power.



Machine Model

• A machine is modeled as a network of processing elements
(PEs) on a plane.

• A PE has O(1) input bits, O(1) output bits, and stores O(1)
bits of state. It can set its outputs to an arbitrary function of
its inputs and state using e units of energy and t units of
time, where etα = 1.

• The input to an algorithm is initially stored at designated
input PEs and the output of the algorithm must be stored at
designated output PEs when computation terminates.

• Sometimes all the input PEs are required to lie along a line,
and all the output PEs are required to lie along a possibly
different line (perimeter I/O).



Lower-Bound Model

• Lower bounds on ETα can be proven by examining the
minimum communication cost that must be incurred by any
algorithm for a problem.

• A PE can have at most d2 other PEs within distance d of
itself, since the PEs lie on a plane.

• The time t and energy e required to send a bit between two
PEs distance d apart must satisfy etα = dα+1.

• Justification: A wire of length d can be thought of as a chain
of d PEs. Since each PE can copy its input bit to its output
bit using 1 unit of time and 1 unit of energy, sending a bit
through d PEs requires d units of time and d units of energy,
giving etα = d · dα = dα+1. Scaling the transmission speed t
does not alter etα because of the corresponding increase in
energy e.



Upper-Bound Model

• An upper bound on ETα for a problem can be demonstrated
by giving a concrete layout of PEs on a plane and an
algorithm for how the PEs are used.

• To ensure that the design can be implemented, PEs are
required to occupy a unit square and can only communicate
with the four PEs directly adjacent to it.

• Wires are just chains of PEs that copy their inputs to their
outputs.



Binary Addition: Lower Bound

• We prove a lower bound on ETα for binary addition of two
n-bit input words from the fact that a carry generated by the
least significant bit can affect all the bits of the sum
(00000001 + 01111111 = 10000000).

• Thus one bit of information must be propagated from the
input PE with the least significant bit to all of the output PEs.

• With the perimeter I/O constraint, the n + 1 output PEs lie
along a line, so one bit of information must travel over a
distance of at least n/2. Since the communication cost alone
is at least etα = dα+1 = (n/2)α+1, the total cost of any
perimeter I/O binary addition algorithm must be Ω(nα+1).

• Without the perimeter I/O constraint, one bit of information
must travel over a distance of at least

√
n, since it must reach

n + 1 output PEs. The ETα complexity of any binary addition
algorithm is therefore Ω((

√
n)α+1) = Ω(n(α+1)/2).



Binary Addition: Perimeter I/O Upper Bound

• A ripple carry adder can be constructed from a chain of n
1-bit adders.

• The ith adder is given bit i of each operand as input, as well
as the carry in ci from the previous adder (c0 = 0).

• It produces bit i of the sum as output—si = ai ⊕ bi ⊕ ci—and
computes the carry out as ci+1 = (ai · bi ) + (ai + bi ) · ci .

• The 1-bit adders operate sequentially, and each adder only
needs to perform computation during one time step, so the
addition requires time O(n) and energy O(n), giving
ETα = O(nα+1). This matches the lower bound of Ω(nα+1).



Binary Addition: Planar I/O Upper Bound

• A carry-lookahead adder can be implemented as a binary tree.

• The ith leaf node receives bit i of each operand as input and
computes bit i of the sum as output: si = ai ⊕ bi ⊕ ci .

• The carry in ci comes from the parent of the leaf node. In
order for this to be computed, each leaf node first provides its
parent with a carry-generate bit gi = ai · bi and a
carry-propagate bit pi = ai ⊕ bi .

• Each internal node receives gl and pl from its left child and gr
and pr from its right child. It calculates the carry-generate bit
for the entire subtree as gt = gr + (gl · pr ) and a
carry-propagate bit for the entire subtree as pt = pl · pr , and
sends these values to its parent.



• The root node provides 0 as the carry in for its left child, gl as
the carry in for its right child, and sets bit n + 1 of the sum to
gr + (gl · pr ). Every other internal node copies the carry in
from its parent to the carry in for its left child, and sets the
carry in for its right child to gl + (cparent · pl).



• The binary tree carry-lookahead adder can be laid out on the
plane as an H-tree.

• Setting the time for PEs at level k and the PEs in the chain
from level k to level k + 1 to 2k/(α+1) yields E = O(

√
n),

T = O(
√
n), and ETα = O((

√
n)α+1) = Ω(n(α+1)/2) for

α > 1, matching the lower bound for ETα.



Sorting: Lower Bound

• Sorting corresponds to matching each input position with the
correct output position.

• To derive a lower bound on the communication cost, consider
the input PEs one by one and permute the input values in
such a way that each input PE must send its input to the
unmatched output PE that is farthest from it.

• The ith input PE can be matched with n − i + 1 output PEs.
For perimeter I/O (all the output PEs lie along a line), this
means that the distance from input PE i to the farthest
unmatched output PE is at least (n − i)/2. For planar I/O,
the distance to the farthest unmatched output PE is at least√
n − i .



• Suppose that the entire sort is completed in T time units.

• For perimeter I/O, the energy ei used to send the ith input
value to the correct output PE in time ti must satisfy
ei t

α
i = dα+1 ≥ ((n − i)/2)α+1. Since ti ≤ T ,

ei ≥ ((n − i)/2)α+1T−α.

• The total energy must be at least

E =
n∑

i=1

ei ≥
n∑

i=1

((n−i)/2)α+1T−α = 2−(α+1)T−α
n∑

i=1

(n−i)α+1.

Thus ETα = Ω(nα+2).

• For the planar I/O case, ei ≥ (
√
n − i)α+1T−α. Thus

E =
n∑

i=1

ei ≥ T−α
n∑

i=1

(n − i)(α+1)/2,

and ETα = Ω(n(α+3)/2).



Sorting: Perimeter I/O Upper Bound

Figure: Sorting network for bubble sort.



In the implementation of bubble sort shown below, allocating unit
time to all PEs results in T = O(n) and E = O(n2). Thus
ETα = O(nα+2), matching the lower bound for perimeter I/O.



Summary

• ETα as a measure of algorithm quality

• Lower-bound versus upper-bound models

• Perimeter I/O versus planar I/O

• Matching lower and upper bounds for addition, multiplication,
and sorting



Questions/Comments


