
A Content-Aware Block Placement Algorithm for
Reducing PRAM Storage Bit Writes

Brian Wongchaowart Marian K. Iskander Sangyeun Cho

March 17, 2010



Motivation

Suppose that you had a block storage device with the following
characteristics:

• There are many free blocks that can be overwritten.

• The cost of writing a new block depends on the choice of
which free block is overwritten.

How can you minimize the cost of writing a sequence of new
blocks to such a device?



Offline Problem

• The offline version of the problem can easily be reduced to
maximum weight bipartite matching.

• We need to match new blocks to be written with free blocks
to overwrite; the edge between a new block x and a free block
a has cost W − d(x , a), where d(x , a) is the cost of
overwriting a with x (Hamming distance or Flip-N-Write cost)
and W is a constant chosen so that W − d(x , a) is always
positive.

• Efficient polynomial time algorithms for maximum weight
bipartite matching are known: for a table of results, see Piotr
Sankowski, “Maximum weight bipartite matching in matrix
multiplication time,” Theoretical Computer Science 410,
no. 44 (2009): 4480–4488.



Online Problem

• In the online version of the problem, new blocks to be written
arrive one at a time.

• The natural greedy algorithm is to write a new block to the
free location with the least cost.

• This greedy algorithm is not optimal, however.

[Everything on competitiveness has been removed from this version
of my slides.]



Implementing the Greedy Algorithm

• Given a set of free blocks and a new block to be written, how
can one quickly find the free block closest to the new block
(the one that costs the least to overwrite)?

• This is the well studied nearest-neighbor search problem:
given a set S of points, find the point in S that is closest to a
specified point (not necessarily in S).

• Since the points that we are interested in are binary vectors,
Manhattan distance (here equivalent to Hamming distance) is
the right distance metric; in the case of Flip-N-Write, one can
search for the nearest neighbor of each of the two possible
representations of a new block.



Elias’s Algorithm1

• If we want to locate a point close to a given point in constant
time, we can try using a hash function.

• Specifically, our goal is to partition the space of possible bit
strings (points) into regions such that two points that lie in
the same region are close to each other; the hash value of a
point is an identifier for the region in which it lies.

• An ideal partitioning is a set of spheres of radius d that
completely fill the space, which guarantees that points that lie
in the same sphere will be within distance 2d of one another.

d d d

1Ronald L. Rivest, “On the Optimality of Elias’s Algorithm for Performing
Best-Match Searches,” Information Processing 74 (1974): 678–681.



• Elias observed that given a perfect error-correcting code with
length n and minimum distance 2d + 1 between codewords,
the codewords are precisely the centers of spheres of radius d
that completely fill the space of possible binary vectors of
length n.

• Finding the unique codeword within Hamming distance d of
an arbitrary point is just the decoding problem for an
error-correcting code that can correct up to d errors.

• Given a new block to be written, the sphere in which it lies
and possibly neighboring spheres can be searched until a free
block is found.

• The major problem with this scheme is that it is difficult to
decode a binary vector of 512 bytes efficiently.



Block Signature Computation Algorithm in My Paper

Divide a block into equal-size sets of bits and use a vector
containing the approximate count of 1-bits in each set as the block
signature (hash value).
Problems:

• Blocks with the same signature may not be similar.

• Similar blocks may not have the same signature.

• Nonuniform distribution of signature values even for uniform
random data.



Figure: Distribution of signature values for uniformly distributed random
data.



Figure: Distribution of signature values for the write request data blocks
of the jpeg trace.



Figure: Distribution of signature values for the write request data blocks
of the dng trace.



Figure: Distribution of signature values for the write request data blocks
of the kernelbuild trace.



Figure: Distribution of signature values for the write request data blocks
of the swsusp trace.



Figure: Distribution of signature values for the write request data blocks
of the BT trace.



Figure: Distribution of signature values for the write request data blocks
of the CG trace.



Figure: Distribution of signature values for the write request data blocks
of the FT trace.



Figure: Distribution of signature values for the write request data blocks
of the MG trace.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.99 49.08 48.79
2 8 16 49.97 49.07 48.78
4 4 16 49.97 49.06 48.77
8 2 16 49.94 49.03 48.73

16 1 16 49.88 49.28 49.25

1 32 32 49.99 49.08 48.79
2 16 32 49.98 49.11 48.86
4 8 32 49.96 49.38 49.30
8 4 32 49.93 49.04 48.75

16 2 32 49.88 49.28 49.25
32 1 32 49.89 49.89 49.89

Table: Percentage of the random trace requiring a bit write.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.94 48.84 48.34
2 8 16 49.90 48.71 48.07
4 4 16 49.96 49.04 48.73
8 2 16 49.88 48.80 48.27

16 1 16 37.68 3.81 0.05

1 32 32 49.94 48.84 48.34
2 16 32 46.96 36.86 28.43
4 8 32 34.17 10.57 2.91
8 4 32 49.48 47.19 46.48

16 2 32 37.68 3.81 0.05
32 1 32 0.00 0.00 0.00

Table: Percentage of the permutation trace requiring a bit write.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.53 48.64 48.35
2 8 16 49.54 48.64 48.36
4 4 16 49.55 48.65 48.36
8 2 16 49.56 48.66 48.37

16 1 16 49.57 48.83 48.65

1 32 32 49.53 48.64 48.35
2 16 32 49.54 48.74 48.54
4 8 32 49.54 49.06 49.01
8 4 32 49.52 48.64 48.36

16 2 32 49.50 48.77 48.59
32 1 32 49.54 49.52 49.52

Table: Percentage of the jpeg trace requiring a bit write.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 30.34 29.39 28.99
2 8 16 30.26 29.31 28.92
4 4 16 30.29 29.54 29.31
8 2 16 30.57 30.00 29.78

16 1 16 32.55 31.86 31.36

1 32 32 30.34 29.39 28.99
2 16 32 30.25 29.00 28.66
4 8 32 30.29 29.64 29.57
8 4 32 30.31 29.43 29.10

16 2 32 30.44 29.68 29.33
32 1 32 32.52 31.61 31.29

Table: Percentage of the dng trace requiring a bit write.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 33.87 32.63 32.08
2 8 16 33.20 32.19 31.68
4 4 16 33.20 32.39 32.01
8 2 16 33.94 32.83 32.29

16 1 16 32.03 30.68 30.27

1 32 32 33.87 32.63 32.08
2 16 32 32.35 31.29 31.10
4 8 32 31.57 30.97 30.90
8 4 32 32.53 31.51 30.98

16 2 32 31.96 30.60 30.20
32 1 32 30.46 30.13 30.09

Table: Percentage of the kernelbuild trace requiring a bit write.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 7.75 3.05 2.54
2 8 16 4.46 2.27 2.08
4 4 16 9.44 4.26 3.26
8 2 16 12.52 8.57 6.77

16 1 16 12.26 8.57 8.00

1 32 32 7.75 3.05 2.54
2 16 32 2.27 2.17 2.16
4 8 32 2.01 1.96 1.95
8 4 32 3.11 2.02 1.87

16 2 32 6.52 4.46 3.85
32 1 32 7.08 5.44 4.91

Table: Percentage of the swsusp trace requiring a bit write.



Initial PRAM contents
Trace Zeros BT CG FT MG

BT 47.81 49.65 50.37 49.67 49.31
CG 51.16 49.13 43.46 49.47 49.57
FT 48.93 49.38 50.00 48.81 49.35
MG 36.29 48.38 49.81 48.84 43.93

Table: Percentage of the NAS snapshot traces requiring a bit write when
DCW is used with random block placement.



Initial PRAM contents
Trace Zeros BT CG FT MG

BT 42.24 0.00 43.89 43.27 42.48
CG 32.96 39.45 0.00 34.38 40.14
FT 42.84 41.34 43.56 16.06 42.67
MG 33.65 40.29 41.85 41.55 0.00

Table: Percentage of the NAS snapshot traces requiring a bit write when
signature-based block placement is used with 4 sets per block, 8 bits per
set, and a search distance limit of 1.



Initial PRAM contents
Trace Zeros BT CG FT MG

BT 38.27 14.70 39.91 38.83 39.15
CG 26.67 25.66 0.38 25.14 25.81
FT 42.27 42.05 43.46 17.90 42.78
MG 33.15 39.64 40.42 40.03 15.04

Table: Percentage of the NAS snapshot traces requiring a bit write when
DCW is used with a manual block placement strategy.



Summary

• The number of bit programming operations needed to store a
new data block in a PRAM storage device depends on the
current contents of the location at which the block is written.

• We proposed a signature-based block placement algorithm for
reducing the number of bit writes required to store a sequence
of new data blocks, which saves energy.

• With the right parameter settings, our block placement
algorithm was able to reduce the number of bit writes needed
to as low as 12.5% of the number needed when DCW
(data-comparison write) alone is used. This figure was
achieved without reading and comparing multiple free blocks.



Questions/Comments


