Energy Corollaries to Amdahl's Law

Sangyeun Cho, Rami Melhem, Michael Moeng University of Pittsburgh

Presented By: Michael Moeng

Outline

- Amdahl's Law
- Power Applications
- Problem Formulation
- Derivations
- Conclusions

Amdahl's Law

- Maximum speedup for a program given
 - Sequential fraction *s*, parallel fraction p=1-s
 - N processors

Speedup =
$$\frac{1}{s + p/N}$$

 Assumes parallel portion can be perfectly parallelized

Power Applications

- Keep execution time constant and improve dynamic energy
- Assumes p ~ f^α
- Find optimal serial and parallel frequency by taking derivative

Power Applications

Keep execution time constant and improve energy

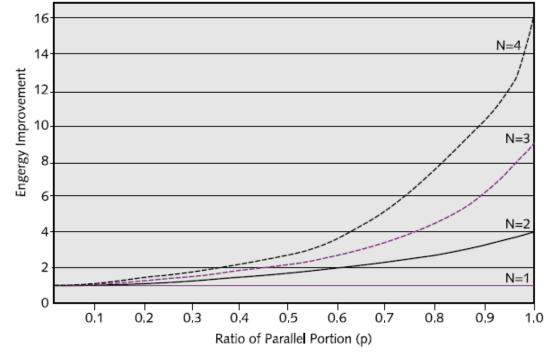


Figure 1. Achievable dynamic energy improvement assuming $\alpha = 3$ and using 1, 2, 3, and 4 processors, given the ratio of serial and parallel work in a program.

Generalized Power

- Now we set speedup to $x \le 1$
- Set f_s, f_p
- What are optimal serial and parallel frequencies?

s + p/N

Generalized Power

- Now we set speedup to $x \le 1$
- Set f_s , f_p s + p/N
- What are optimal serial and parallel frequencies?
- Trivial minimize frequencies
- Must consider static power!

Problem Formulation

- Serial work s completes in time t
- Parallel work p=1-s completes in time 1/x-t
 - Recall that x is speedup, so 1/x is total time

$$f_s = \frac{s}{t}$$

$$f_p = \frac{1-s}{(1/x-t)\cdot N}$$

- Energy is composed of
 - Serial dynamic energy
 - Parallel dynamic energy
 - Static energy

$$= t \cdot f_s^a$$

= $N \cdot \left(\frac{1}{x} - t\right) \cdot f_p^a$
= $N \cdot \lambda \cdot \frac{1}{x}$

- First consider special case, x=1 (same execution time as serial case)
- Take derivative with respect to t

- First consider special case, x=1 (same execution time as serial case)
- Take derivative with respect to t

$$t^{*} = \frac{s}{s + p/N^{(a-1)/a}}$$

$$f_{s}^{*} = \frac{s}{t^{*}} = s + \frac{p}{N^{(a-1)/a}}$$

$$f_{p}^{*} = \left(s + \frac{p}{N^{(\alpha-1)/\alpha}}\right)/N^{\frac{1}{\alpha}}$$

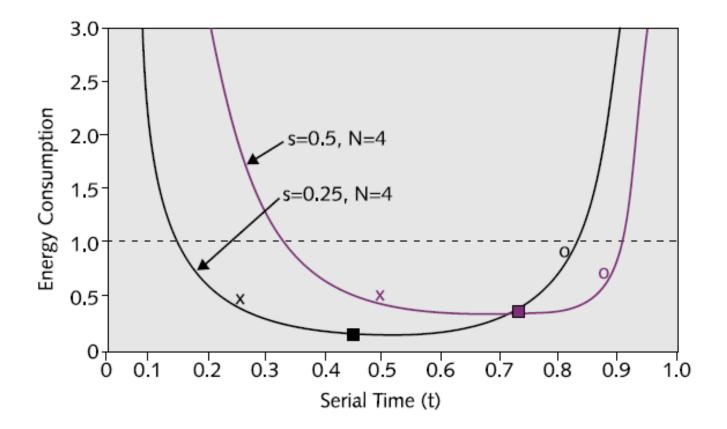
- First consider special case, x=1 (same execution time as serial case)
- Take derivative with respect to t

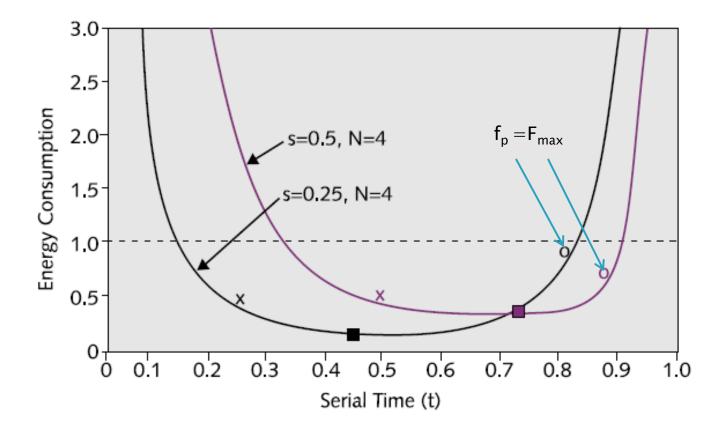
$$t^{*} = \frac{s}{s + p/N^{(a-1)/a}}$$

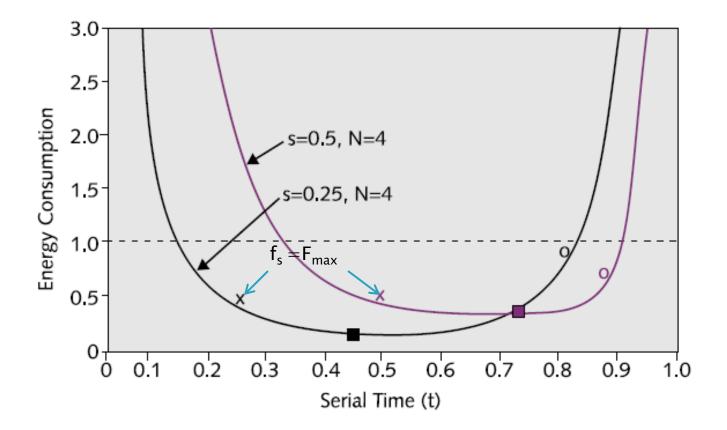
$$f_{s}^{*} = \frac{s}{t^{*}} = s + \frac{p}{N^{(a-1)/a}}$$

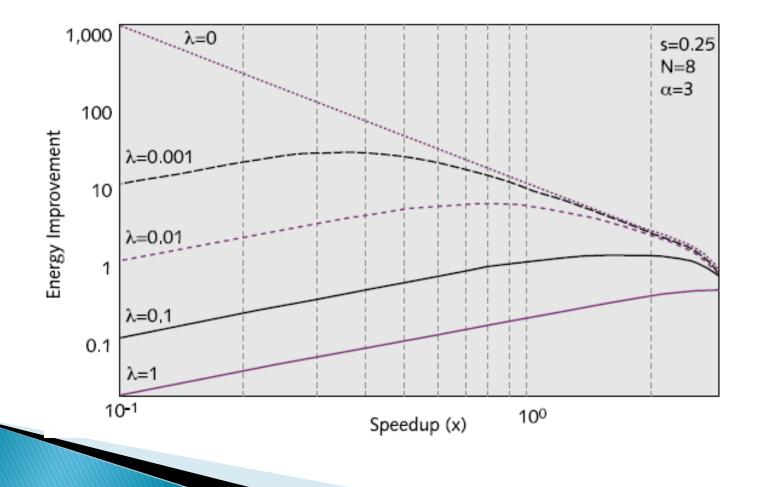
$$f_{p}^{*} = \left(s + \frac{p}{N^{(\alpha-1)/\alpha}}\right)/N^{\frac{1}{\alpha}} = f_{s}^{*}/N^{\frac{1}{a}}$$

- Relation between f^{*}_s and f^{*}_p is dependent on N, but not s!
- Note that static energy has no effect in this case



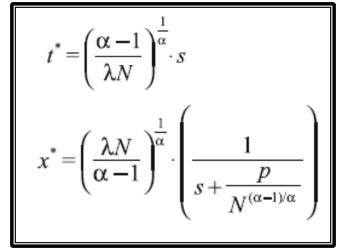




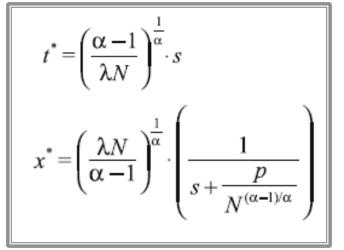


- Relax execution time constraint
 - Set derivatives with respect to both x and t to 0
 - Solve equations

- Relax execution time constraint
 - Set derivatives with respect to both x and t to 0
 - Solve equations

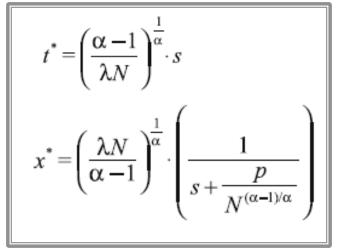


- Relax execution time constraint
 - Set derivatives with respect to both x and t to 0
 - Solve equations



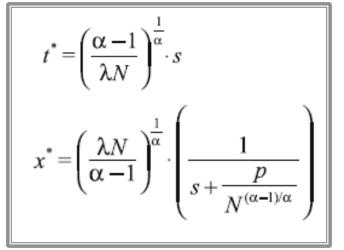
$$f_s^* = \left(\frac{\lambda N}{\alpha - 1}\right)^{\frac{1}{\alpha}}$$
$$f_p^* = \left(\frac{\lambda}{\alpha - 1}\right)^{\frac{1}{\alpha}} = f_s^* / N^{\frac{1}{\alpha}}$$

- Relax execution time constraint
 - Set derivatives with respect to both x and t to 0
 - Solve equations



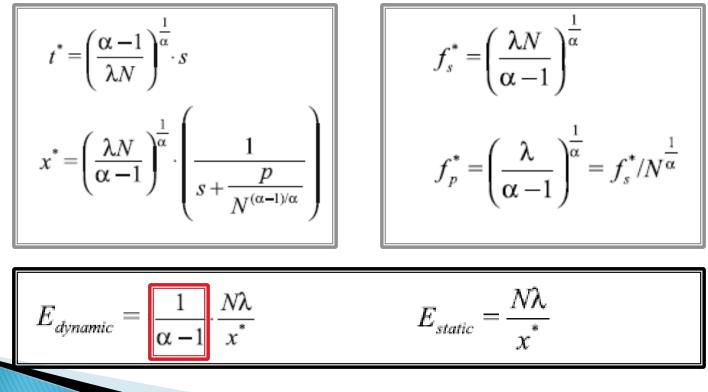
$$f_s^* = \left(\frac{\lambda N}{\alpha - 1}\right)^{\frac{1}{\alpha}}$$
$$f_p^* = \left(\frac{\lambda}{\alpha - 1}\right)^{\frac{1}{\alpha}} = f_s^* / N^{\frac{1}{\alpha}}$$

- Relax execution time constraint
 - Set derivatives with respect to both x and t to 0
 - Solve equations

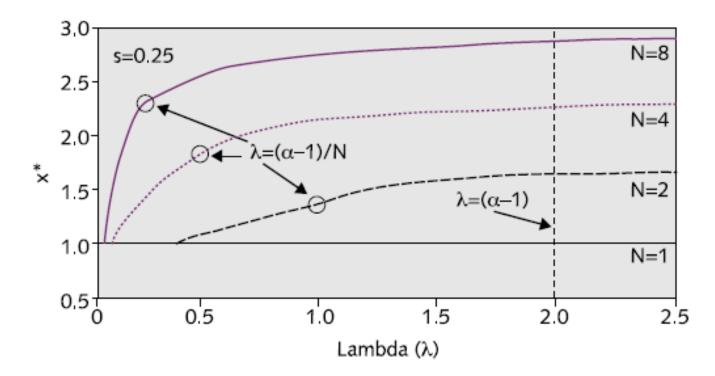


$$f_{s}^{*} = \left(\begin{array}{c} \lambda \\ \alpha \\ \alpha \\ \end{array} \right)^{\frac{1}{\alpha}}$$
$$f_{p}^{*} = \left(\begin{array}{c} \lambda \\ \alpha \\ \alpha \\ \end{array} \right)^{\frac{1}{\alpha}} = f_{s}^{*} / N^{\frac{1}{\alpha}}$$

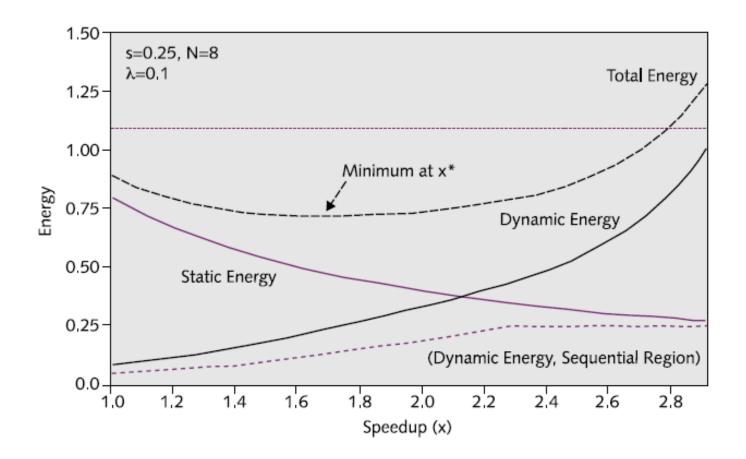
- Relax execution time constraint
 - Set derivatives with respect to both x and t to 0
 - Solve equations



- > Previous solution necessitates $\lambda N \le \alpha 1$
 - $\circ f_{s} = F_{max}$



Dynamic and Static Energy



Energy Delay

$$ED(t,x) = \left(t \cdot f_s^{\alpha} + N \cdot \left(\frac{1}{x} - t\right) \cdot f_p^{\alpha} + N \cdot \lambda \cdot \frac{1}{x}\right) \cdot \frac{1}{x}$$

• Energy Delay $ED(t,x) = (t \cdot f_s^{\alpha} + N \cdot \left(\frac{1}{x} - t\right) \cdot f_p^{\alpha} + N \cdot \lambda \cdot \frac{1}{x}) \cdot \frac{1}{x}$

$$f_s^* = \left(\frac{2N\lambda}{\alpha - 2}\right)^{1/\alpha}$$
$$f_p^* = \left(\frac{2\lambda}{\alpha - 2}\right)^{1/\alpha}$$

• Energy Delay $ED(t,x) = (t \cdot f_s^{\alpha} + N \cdot \left(\frac{1}{x} - t\right) \cdot f_p^{\alpha} + N \cdot \lambda \cdot \frac{1}{x}) \cdot \frac{1}{x}$

$$f_s^* = \left(\frac{2N\lambda}{\alpha - 2}\right)^{1/\alpha}$$
$$f_p^* = \left(\frac{2\lambda}{\alpha - 2}\right)^{1/\alpha}$$

Same relation between f_s^* and f_p^*

Implications?

- Synchronization cost
 - Parallel architectures have some overhead for communication
 - As N increases, more total work is required, which can be expressed as a function
 - Total work is now s + p(1 + $\sigma(N)$)

- Synchronization cost
 - Parallel architectures have some overhead for communication
 - As N increases, more total work is required, which can be expressed as a function
 - Total work is now s + (p + $\sigma(N)$)
- Optimal serial and parallel frequencies have the same relationship

 Still differ by N^{1/α}

Andahl's Law in the Multicore Era

Mark D. Hill, University of Wisconsin-Madison and Michael R. Marty, Google

Presented By: Michael Moeng

Asymmetric Cores

- Chip has a total resource budget, defined in the number of 'baseline' cores that can be supported
- Assume performance for an *r*-BCE core grows by sqrt(*r*)

Trade-off power vs performance