

 Marek Chrobak

University of California, Riverside

Minimum Energy Scheduling

How to Keep Sheep Warm
in a Snow Storm?

• n sheep on a line huddle together to stay warm
• Each sheep is chained
• Objective: group sheep to minimize # of gaps

A

B

C

D

F

G

H

How to Keep Sheep Warm in a Snow Storm?

A CB D F GHE

E

• n sheep on a line huddle together to stay warm
• Each sheep is chained
• Objective: group sheep to minimize # of gaps

A

B

C

D

F

G

H

How to Keep Sheep Warm in a Snow Storm?

A CB D F G HE

E

• n sheep on a line huddle together to stay warm
• Each sheep is chained
• Objective: group sheep to minimize # of gaps

A

B

C

D

F

G

H

How to Keep Sheep Warm in a Snow Storm?

A CB D F G HE

E

• n sheep on a line huddle together to stay warm
• Each sheep is chained
• Objective: group sheep to minimize # of gaps

A

B

C

D

F

G

H

How to Keep Sheep Warm in a Snow Storm?

A CB D F G HE

E

• n sheep on a line huddle together to stay warm
• Each sheep is chained
• Objective: group sheep to minimize # of gaps

A

B

C

D

F

G

H

How to Keep Sheep Warm in a Snow Storm?

A CB D F G HE

E

• n sheep on a line huddle together to stay warm
• Each sheep is chained
• Objective: group sheep to minimize # of gaps

A

B

C

D

F

G

H

How to Keep Sheep Warm in a Snow Storm?

A CB D F G HE

E

partial grouping 1

partial grouping 2

3

Intuition -- why naive algorithms can’t work ...

How to Keep Sheep Warm in a Snow Storm?

partial grouping 1

partial grouping 2

3

Intuition -- why naive algorithms can’t work ...

How to Keep Sheep Warm in a Snow Storm?

grouping 1 is better, so far ...

partial grouping 1

partial grouping 2

3

Intuition -- why naive algorithms can’t work ...

How to Keep Sheep Warm in a Snow Storm?

grouping 1 is better, so far ...

partial grouping 1

partial grouping 2

3

Intuition -- why naive algorithms can’t work ...

How to Keep Sheep Warm in a Snow Storm?

grouping 1 is better, so far ...

partial grouping 1

partial grouping 2

3

Intuition -- why naive algorithms can’t work ...

How to Keep Sheep Warm in a Snow Storm?

grouping 1 is better, so far ...
but only grouping 2 could be extensible to global optimum

tradeoff: # gaps vs gap sizes

• [aj,bj] = range of sheep j
• assume b1 ≤ b2 ≤ ... ≤ bn

• a gap with respect to interval [u,v]:
- internal gap or
- initial gap or
- final gap

u v

3 gaps w.r.t. [u,v]

How to Keep Sheep Warm in a Snow Storm?

GapsF(u,v) =

A

B
C

D

E
F

G
u v

How to Keep Sheep Warm in a Snow Storm?

Instk(u,v) = all sheep j ∊ {1,2,...,k} for which aj ∈ [u,v]

Gapsk(u,v) = min. number of gaps of Instk(u,v) w.r.t [u,v]

A C B D E F G

?

GapsF(u,v) =

A

B
C

D

E
F

G
u v

How to Keep Sheep Warm in a Snow Storm?

Instk(u,v) = all sheep j ∊ {1,2,...,k} for which aj ∈ [u,v]

Gapsk(u,v) = min. number of gaps of Instk(u,v) w.r.t [u,v]

A C B D E F

?

GapsF(u,v) =

A

B
C

D

E
F

G
u v

How to Keep Sheep Warm in a Snow Storm?

Instk(u,v) = all sheep j ∊ {1,2,...,k} for which aj ∈ [u,v]

Gapsk(u,v) = min. number of gaps of Instk(u,v) w.r.t [u,v]

C B D E F

?

GapsF(u,v) =

A

B
C

D

E
F

G
u v

How to Keep Sheep Warm in a Snow Storm?

Instk(u,v) = all sheep j ∊ {1,2,...,k} for which aj ∈ [u,v]

Gapsk(u,v) = min. number of gaps of Instk(u,v) w.r.t [u,v]

B D E F

?

GapsF(u,v) =

A

B
C

D

E
F

G
u v

How to Keep Sheep Warm in a Snow Storm?

Instk(u,v) = all sheep j ∊ {1,2,...,k} for which aj ∈ [u,v]

Gapsk(u,v) = min. number of gaps of Instk(u,v) w.r.t [u,v]

B D E F

?

GapsF(u,v) =

A

B
C

D

E
F

G
u v

How to Keep Sheep Warm in a Snow Storm?

Instk(u,v) = all sheep j ∊ {1,2,...,k} for which aj ∈ [u,v]

Gapsk(u,v) = min. number of gaps of Instk(u,v) w.r.t [u,v]

B D EF

1

Recurrence for Gapsk(u,v)

How to Keep Sheep Warm in a Snow Storm?

Recurrence for Gapsk(u,v)

Case 1: ak ∉ [u,v]. Then k ∉ Instk(u,v), so
Gapsk(u,v) = Gapsk-1(u,v)

How to Keep Sheep Warm in a Snow Storm?

Recurrence for Gapsk(u,v)

Case 1: ak ∉ [u,v]. Then k ∉ Instk(u,v), so
Gapsk(u,v) = Gapsk-1(u,v)

Case 2: ak ∈ [u,v], so k ∈ Instk(u,v).
If k is scheduled at time t then

 Instk(u,v) = {k} ∪ Instk-1(u,t) ∪ Instk-1(t+1,v)

How to Keep Sheep Warm in a Snow Storm?

Recurrence for Gapsk(u,v)

Case 1: ak ∉ [u,v]. Then k ∉ Instk(u,v), so
Gapsk(u,v) = Gapsk-1(u,v)

Case 2: ak ∈ [u,v], so k ∈ Instk(u,v).
If k is scheduled at time t then

 Instk(u,v) = {k} ∪ Instk-1(u,t) ∪ Instk-1(t+1,v)

How to Keep Sheep Warm in a Snow Storm?

Philippe’s Partition Principle: Wlog grouping looks like this:

k

u vt

Instk-1(u,t) = Instk-1(u,t-1) Instk-1(t+1,v)

 (in particular, no ri at t, i ≠ k)

Case 2: ak ∈ [u,v], proof of PPP.

Fix an optimal grouping with maximum t (position of k)

How to Keep Sheep Warm in a Snow Storm?

Case 2: ak ∈ [u,v], proof of PPP.

jk

u v
k

j
t

If j ∈ Instk-1(t+1,v):

Fix an optimal grouping with maximum t (position of k)

How to Keep Sheep Warm in a Snow Storm?

Case 2: ak ∈ [u,v], proof of PPP.

jk

u v
k

j
t

If j ∈ Instk-1(t+1,v):

Fix an optimal grouping with maximum t (position of k)

jk

If j ∈ Instk-1(u,t):

u v
k

j
t

How to Keep Sheep Warm in a Snow Storm?

Case 2: ak ∈ [u,v], proof of PPP.

jk

u v
k

j
t

If j ∈ Instk-1(t+1,v):

Fix an optimal grouping with maximum t (position of k)

j k

If j ∈ Instk-1(u,t):

u v
k

j
t

How to Keep Sheep Warm in a Snow Storm?

jk

u v
k

j
t

If j ∈ Instk-1(t+1,v):

jk

If j ∈ Instk-1(u,t-1):

u v
k

j
t

How to Keep Sheep Warm in a Snow Storm?

Fix an optimal grouping with maximum t (position of k)

Case 2: ak ∈ [u,v], proof of PPP.

jk

u v
k

j
t

If j ∈ Instk-1(t+1,v):

j k

If j ∈ Instk-1(u,t-1):

u v
k

j
t

How to Keep Sheep Warm in a Snow Storm?

Fix an optimal grouping with maximum t (position of k)

Case 2: ak ∈ [u,v], proof of PPP.

How to Keep Sheep Warm in a Snow Storm?

k

u vtInstk-1(u,t) =
Instk-1(u,t-1)

Instk-1(t+1,v)

Philippe’s Partition Principle: Wlog grouping looks like this:

Recurrence for Gapsk(u,v)

Case 1: ak ∉ [u,v]. Then k ∉ Instk(u,v), so
Gapsk(u,v) = Gapsk-1(u,v)

Case 2: ak ∈ [u,v], so k ∈ Instk(u,v).
If k is scheduled at time t then

 Instk(u,v) = {k} ∪ Instk-1(u,t) ∪ Instk-1(t+1,v)

So Gapsk(u,v) = Gapsk-1(u,t-1) + Gapsk-1(t+1,v)

How to Keep Sheep Warm in a Snow Storm?

k

u vtInstk-1(u,t) =
Instk-1(u,t-1)

Instk-1(t+1,v)

Philippe’s Partition Principle: Wlog grouping looks like this:

Recurrence for Gapsk(u,v)

Case 1: ak ∉ [u,v]. Then k ∉ Instk(u,v), so
Gapsk(u,v) = Gapsk-1(u,v)

Case 2: ak ∈ [u,v], so k ∈ Instk(u,v).
If k is scheduled at time t then

 Instk(u,v) = {k} ∪ Instk-1(u,t) ∪ Instk-1(t+1,v)

So Gapsk(u,v) = Gapsk-1(u,t-1) + Gapsk-1(t+1,v)

How to Keep Sheep Warm in a Snow Storm?

k

u vtInstk-1(u,t) =
Instk-1(u,t-1)

Instk-1(t+1,v)

Philippe’s Partition Principle: Wlog grouping looks like this:

Recurrence for Gapsk(u,v)

Case 1: ak ∉ [u,v]. Then k ∉ Instk(u,v), so
Gapsk(u,v) = Gapsk-1(u,v)

Case 2: ak ∈ [u,v], so k ∈ Instk(u,v).
If k is scheduled at time t then

 Instk(u,v) = {k} ∪ Instk-1(u,t) ∪ Instk-1(t+1,v)

What’s t? Try all !!!

How to Keep Sheep Warm in a Snow Storm?

Output Gapsn(amin-1 , bmax+1)

Algorithm B0:
 if ak ∉ [u,v] then
 Gapsk(u,v) = Gapsk-1(u,v)
 if ak ∈ [u,v] then
 Gapsk(u,v) = mint { Gapsk-1(u,t-1) + Gapsk-1(t+1,v) } where ak ≤ t ≤ min(v,bt)

Time O((n k’s)⋅(R u’s)⋅(R v’s)⋅(R t’s)) = O(nR3) for R = bmax - amin

How to Keep Sheep Warm in a Snow Storm?

Output Gapsn(amin-1 , bmax+1)

Algorithm B0:
 if ak ∉ [u,v] then
 Gapsk(u,v) = Gapsk-1(u,v)
 if ak ∈ [u,v] then
 Gapsk(u,v) = mint { Gapsk-1(u,t-1) + Gapsk-1(t+1,v) } where ak ≤ t ≤ min(v,bt)

Time O((n k’s)⋅(R u’s)⋅(R v’s)⋅(R t’s)) = O(nR3) for R = bmax - amin

Call set A a minimizer set if choosing u,v,t from A does not
increase the solution

Can we find a smaller minimizer set?

How to Keep Sheep Warm in a Snow Storm?

Output Gapsn(amin-1 , bmax+1)

Algorithm B0:
 if ak ∉ [u,v] then
 Gapsk(u,v) = Gapsk-1(u,v)
 if ak ∈ [u,v] then
 Gapsk(u,v) = mint { Gapsk-1(u,t-1) + Gapsk-1(t+1,v) } where ak ≤ t ≤ min(v,bt)

How to Keep Sheep Warm in a Snow Storm?

Reducing minimizer sets

DC A B k

A
B

C
D

k

How to Keep Sheep Warm in a Snow Storm?

Reducing minimizer sets
shift each group right:

DC A B k

A
B

C
D

k

How to Keep Sheep Warm in a Snow Storm?

Reducing minimizer sets
shift each group right:

DC A B k

A
B

C
D

k

bA±z, z ≤ n

How to Keep Sheep Warm in a Snow Storm?

Reducing minimizer sets
shift each group right:

DC A B k

A
B

C
D

k

bA±z, z ≤ n

So {bj±z’s} = {bj±z : j, z ≤ n} is a minimizer set for t

| {bj±z’s} | = O(n2)

How to Keep Sheep Warm in a Snow Storm?

Choose u,v,t from {bj±z’s}

So running time = O(n⋅n2⋅n2⋅n2) = O(n7) [Baptiste, SODA’06]

Output Gapsn(amin-1 , bmax+1)

Algorithm B1:
 if ak ∉ [u,v] then
 Gapsk(u,v) = Gapsk-1(u,v)
 if ak ∈ [u,v] then
 Gapsk(u,v) = mint { Gapsk-1(u,t-1) + Gapsk-1(t+1,v) } where ak ≤ t ≤ min(v,bt)

Minimum Energy Scheduling
- Overview

Minimum Energy Scheduling
Instance: collection of n jobs
• job j has release time rj, deadline dj, processing time pj
• 1 unit of processing costs 1 unit of energy
• turning the system on costs L units of energy

Schedule = when each job is processed and when the
processor is on

Objective: Compute a preemptive schedule that minimizes
the total energy usage (assume instance is feasible)

Minimum Energy Scheduling
Instance: collection of n jobs
• job j has release time rj, deadline dj, processing time pj
• 1 unit of processing costs 1 unit of energy
• turning the system on costs L units of energy

Schedule = when each job is processed and when the
processor is on

Objective: Compute a preemptive schedule that minimizes
the total energy usage (assume instance is feasible)

> L≤ L ≤ L ≤ L> L

idle busy

long shortStructure of an optimal schedule:

Minimum Energy Scheduling
Instance: collection of n jobs
• job j has release time rj, deadline dj, processing time pj
• 1 unit of processing costs 1 unit of energy
• turning the system on costs L units of energy

Schedule = when each job is processed and when the
processor is on

Objective: Compute a preemptive schedule that minimizes
the total energy usage (assume instance is feasible)

> L≤ L ≤ L ≤ L> L

idle busy

long shortStructure of an optimal schedule:

Minimum Energy Scheduling
Instance: collection of n jobs
• job j has release time rj, deadline dj, processing time pj
• 1 unit of processing costs 1 unit of energy
• turning the system on costs L units of energy

Schedule = when each job is processed and when the
processor is on

Objective: Compute a preemptive schedule that minimizes
the total energy usage (assume instance is feasible)

> L≤ L ≤ L ≤ L> L

idle busy

long shortStructure of an optimal schedule:

E = ∑gaps g min(length(g) , L)

objective function (ignore green time):

Minimum Energy Scheduling

What sheep have to do with it?

For L = 1 and all pj = 1 :

• E = # of gaps

• =

• rj = aj and dj = bj

j

Minimum Energy Scheduling

What sheep have to do with it?

For L = 1 and all pj = 1 :

• E = # of gaps

• =

• rj = aj and dj = bj

j

So the case (unit jobs, L ≤ 1) can be solved in time O(n7)

Minimum Energy Scheduling

What’s known?

proc. L pj assumption time

1 any 1 O(n7) [B’06]
O(n4) [BCD’08]

1 any any O(n5) [BCD’08]
m any 1 O(n7m5) [DG...’07]
1 1 any agreeable O(nlogn) [GJS’10]
1 any 1 agreeable O(n3) [GJS’10]
m 1 1 agreeable O(n3m2] [GJS’10]

Posed as open: Sviridenko [05], Irani, Pruhs [05]

[B’06] = Baptiste
[BCD’08] = Baptiste, Chrobak, Dürr
[DG...’07] = Demaine, Ghodsi, Hajiaghayi, Sayedi-Roshkhar, Zadimoghaddam
[GJS’10] = Gururaj, Jalan, Stein

Minimum Energy Scheduling

What’s known?

proc. L pj assumption time

1 any 1 O(n7) [B’06]
O(n4) [BCD’08]

1 any any O(n5) [BCD’08]
m any 1 O(n7m5) [DG...’07]
1 1 any agreeable O(nlogn) [GJS’10]
1 any 1 agreeable O(n3) [GJS’10]
m 1 1 agreeable O(n3m2] [GJS’10]

Posed as open: Sviridenko [05], Irani, Pruhs [05]

[B’06] = Baptiste
[BCD’08] = Baptiste, Chrobak, Dürr
[DG...’07] = Demaine, Ghodsi, Hajiaghayi, Sayedi-Roshkhar, Zadimoghaddam
[GJS’10] = Gururaj, Jalan, Stein

ri < rj ⇔ dj < dj

Minimum Energy Scheduling
- Techniques

Minimum Energy Scheduling

Main techniques:

✴ Philippe’s partitioning trick √

✴ Reducing the minimizer sets

✴ Inversion trick (“large” parameter ⇔ “small” value)

✴ O(n2)-time reduction: Energy ≼ Gaps

Reducing Minimizer Sets (L=1, pj=1)

k
u vt Instk-1(u,t) Instk-1(t+1,v)

Reminder: u,v,t ∈ {dj±z} , | {dj±z} | = O(n2)

Output Gapsn(rmin-1 , dmax+1)

Algorithm B1-L1P1:
 if rk ∉ [u,v-1] then
 Gapsk(u,v) = Gapsk-1(u,v)
 if rk ∈ [u,v-1] then
 Gapsk(u,v) = mint { Gapsk-1(u,t) + Gapsk-1(t+1,v) } where rk ≤ t < min(v,dt)

Reducing Minimizer Sets (L=1, pj=1)

Three WLOG observations:

k
u vt Instk-1(u,t) Instk-1(t+1,v)

Reducing Minimizer Sets (L=1, pj=1)

Three WLOG observations:

k
u vt Instk-1(u,t) Instk-1(t+1,v)

‣ t is maximum possible

Reducing Minimizer Sets (L=1, pj=1)

Three WLOG observations:

k
u vt Instk-1(u,t) Instk-1(t+1,v)

‣ t is maximum possible

‣ all deadlines are different

Reducing Minimizer Sets (L=1, pj=1)

Three WLOG observations:

k
u vt Instk-1(u,t) Instk-1(t+1,v)

‣ t is maximum possible

‣ all deadlines are different

➩

Reducing Minimizer Sets (L=1, pj=1)

Three WLOG observations:

k
u vt Instk-1(u,t) Instk-1(t+1,v)

‣ t is maximum possible

‣ release times are different

‣ all deadlines are different

➩

Reducing Minimizer Sets (L=1, pj=1)

Three WLOG observations:

k
u vt Instk-1(u,t) Instk-1(t+1,v)

‣ t is maximum possible

‣ release times are different

‣ all deadlines are different

➩

‣ v ≤ dk+1

Reducing Minimizer Sets (L=1, pj=1)

Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

Reducing Minimizer Sets (L=1, pj=1)

Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

If k scheduled last then Instk-1(t+1,v) is empty
So assume k is not last

Reducing Minimizer Sets (L=1, pj=1)

Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

If k scheduled last then Instk-1(t+1,v) is empty
So assume k is not last

Claim: There is j right after k

k
t

j

Reducing Minimizer Sets (L=1, pj=1)

Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

If k scheduled last then Instk-1(t+1,v) is empty
So assume k is not last

t

Proof: If not

Claim: There is j right after k

k
t

j

k

Reducing Minimizer Sets (L=1, pj=1)

Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

If k scheduled last then Instk-1(t+1,v) is empty
So assume k is not last

move k to later (possible, because dk is largest)
 -- contradiction

t

Proof: If not

Claim: There is j right after k

k
t

j

k

Reducing Minimizer Sets (L=1, pj=1)

Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

From claim: t = rj-1
so
- minimizer set for t’s = {rj-1’s}
- minimizer set for u’s = {rjs}

If k scheduled last then Instk-1(t+1,v) is empty
So assume k is not last

Claim: There is j right after k

k
t

j

Reducing Minimizer Sets (L=1, pj=1)

Output Gapsn(rmin-1 , dmax+1)

Algorithm B2-L1P1:
 if rk ∉ [u,v-1] then
 Gapsk(u,v) = Gapsk-1(u,v)
 if rk ∈ [u,v-1] then
 Gapsk-1(u,v-1) Gapsk(u,v) = min
 mint { Gapsk-1(u,t) + Gapsk-1(t+1,v) } where ak ≤ t < min(v,dt)

Above, choose: u ∈ {rj’s} , t ∈ {rj+1’s} and v ∈ {dj±z’s}

⇒ Running time = O((n k’s)⋅(n u’s)⋅(n2 v’s)⋅(n t’s)) = O(n5)

Minimum Energy Scheduling

Main techniques:

✴ Philippe’s partitioning trick √

✴ Reducing the minimizer sets √

✴ Inversion trick (“large” parameter ⇔ “small” value)

✴ O(n2)-time reduction: Energy ≼ Gaps

Inversion Trick

Consider a function F(a,...) = min{f : Yaddi-Yadda(a,f,...)} s.t.
• F(a,...) is monotone w.r.t. a
• range of a is large (exponential)
• range of F(a,...) is small (polynomial)

a

f
Yaddi-Yadda(a,f,...)

F(a,...)

a

Inversion Trick

Instead compute A(f,...) = min{a : Yaddi-Yadda(a,f,...)}

and then F(a,...) = min{f : A(f,...) ≥ a}
 (binary search)

Consider a function F(a,...) = min{f : Yaddi-Yadda(a,f,...)} s.t.
• F(a,...) is monotone w.r.t. a
• range of a is large (exponential)
• range of F(a,...) is small (polynomial)

f

A(f,...) a

f
Yaddi-Yadda(a,f,...)

Example 1: Extending Algorithm B2L1P1 (minimizing #
gaps,unit jobs) to arbitrary processing times

Inversion Trick (any pj, gaps)

Obvious approach: break each job into unit jobs
pj = 4

➩

Example 1: Extending Algorithm B2L1P1 (minimizing #
gaps,unit jobs) to arbitrary processing times

Inversion Trick (any pj, gaps)

Obvious approach: break each job into unit jobs
pj = 4

➩
This leads to:
• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Gk,p(u,v) = minimum # gaps w.r.t. [u,v] for Instk,p(u,v)

Example 1: Extending Algorithm B2L1P1 (minimizing #
gaps,unit jobs) to arbitrary processing times

Inversion Trick (any pj, gaps)

Obvious approach: break each job into unit jobs
pj = 4

➩
This leads to:
• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Gk,p(u,v) = minimum # gaps w.r.t. [u,v] for Instk,p(u,v)

We can apply Algorithm 2 but ... range of p not polynomial

Example 1: Extending Algorithm B2L1P1 (minimizing #
gaps,unit jobs) to arbitrary processing times

Inversion Trick (any pj, gaps)

Obvious approach: break each job into unit jobs
pj = 4

➩
This leads to:
• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Gk,p(u,v) = minimum # gaps w.r.t. [u,v] for Instk,p(u,v)

So we invert:
 Ak,g(u,v) = minimum amount p of job k for which

Instk,p(u,v) has a schedule with ≤ g gaps

Inversion Trick (any pj, gaps)

Example 1: Extending Algorithm B2L1P1 (minimizing #
gaps,unit jobs) to arbitrary processing times

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Inversion Trick (any pj, gaps)

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:

k k k

u v

Inversion Trick (any pj, gaps)

t

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:

k k k

u v

Inversion Trick (any pj, gaps)

t

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:

k k k

u v

busy before and after t

Inversion Trick (any pj, gaps)

t

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:

k k k

u v
we must have t = rl

busy before and after t

Inversion Trick (any pj, gaps)

Assume not whole k executed at the end:

t
k k k

u v

f gaps h gaps where f+h = g

Inversion Trick (any pj, gaps)

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:

t
k k k

u v

f gaps h gaps where f+h = g

 Ak,h(t,v) units of k

Inversion Trick (any pj, gaps)

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:

t
k k k

u v

f gaps h gaps where f+h = g

 Ak,h(t,v) units of k

minimum amount of k
with f gaps before t

Inversion Trick (any pj, gaps)

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:

t
k k k

u v

f gaps h gaps where f+h = g

 Ak,h(t,v) units of kmax. compl. time of Instk-1(u,t)
with f gaps = Ck-1,f(u,t)

Inversion Trick (any pj, gaps)

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:

t
k k k

u v

f gaps h gaps where f+h = g

 Ak,h(t,v) units of kCk-1,f(u,t)

Ak,g(u,v) = mint minf+h=g (t - Ck-1,f(u,t) + Ak,h(t,v))
where t ∈ {rj}, u ∈ {rj}, v ∈ {dj±z}

Also, we need recurrence for Ck,f(u,v) using A(...)

Running time O(n7)

Inversion Trick (any pj, gaps)

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
• Ak,g(u,v) = minimum amount p of job k for which
 Instk,p(u,v) has a schedule with ≤ g gaps

Inversion Trick (unit jobs, gaps, but faster)

Example 2: Speeding up the unit/gaps case to O(n4)

Gk(u,v) = mint { # gaps : yaddi yadda }

O(n)
O(n) O(n2)

O(n) values
O(n)

Inversion Trick (unit jobs, gaps, but faster)

Example 2: Speeding up the unit/gaps case to O(n4)

Gk(u,v) = mint { # gaps : yaddi yadda }

Invert: compute

 Vk(u,g) = max { v : Instk(u,v) has schedule with g gaps }

O(n)
O(n) O(n2)

O(n) values
O(n)

Inversion Trick (unit jobs, gaps, but faster)

Example 2: Speeding up the unit/gaps case to O(n4)

Gk(u,v) = mint { # gaps : yaddi yadda }

Invert: compute

 Vk(u,g) = max { v : Instk(u,v) has schedule with g gaps }

O(n)
O(n) O(n2)

O(n) values
O(n)

Can be extended to any pj‘s in time O(n5) [BCD’08]

Gives O(n4) [BCD’08]

Minimum Energy Scheduling

Main techniques:

✴ Philippe’s partitioning trick √

✴ Reducing the minimizer sets √

✴ Inversion trick (“large” parameter ⇔ “small” value) √

✴ O(n2)-time reduction: Energy ≼ Gaps

Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule
[u,v) = short gap in S

Claim: wlog, if rj < v then j is executed before v

Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule
[u,v) = short gap in S

Claim: wlog, if rj < v then j is executed before v

≤ L

j

S

u v

Proof: suppose not

j

Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule
[u,v) = short gap in S

Claim: wlog, if rj < v then j is executed before v

≤ L

j

S

u v

Proof: suppose not

j

Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule
[u,v) = short gap in S

Claim: wlog, if rj < v then j is executed before v

Then E(new S) ≤ E(S) and new S is lex-smaller than S
 -- contradiction

≤ L

j

S

u v

Proof: suppose not

j

Reduction: Energy ≼ Gaps

S = lex-minimal energy optimal schedule
[u,v) = short gap in S

So S looks like this

≤ L

m

u v = rm

jobs released before v jobs released at or after v

no release
 times

Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule
So S looks like this:

S
> L > L > L

Inst(u,v)

u = rs v = rj

schedule with G(u,v) gaps and
maximum completion time C(u,v)

Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule
So S looks like this:

S
> L > L > L

Inst(u,v)

u = rs v = rj

schedule with G(u,v) gaps and
maximum completion time C(u,v)

Denote Es = minimum energy schedule of jobs released ≥ rs

Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule
So S looks like this:

S
> L > L > L

Inst(u,v)

u = rs v = rj

schedule with G(u,v) gaps and
maximum completion time C(u,v)

Denote Es = minimum energy schedule of jobs released ≥ rs

Es = min { L⋅[G(rs,rj)-1] + [rj-C(rs,rj)] + Ej }
 rj > rs

Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule
So S looks like this:

S
> L > L > L

Inst(u,v)

u = rs v = rj

schedule with G(u,v) gaps and
maximum completion time C(u,v)

Denote Es = minimum energy schedule of jobs released ≥ rs

Es = min { L⋅[G(rs,rj)-1] + [rj-C(rs,rj)] + Ej }
 rj > rs

Running time: O(n2) + (time to compute all G(), C() values)

Minimum Energy Scheduling

Main techniques:

✴ Philippe’s partitioning trick √

✴ Reducing the minimizer sets √

✴ Inversion trick (“large” parameter ⇔ “small” value) √

✴ O(n2)-time reduction: Energy ≼ Gaps √

Minimum Energy Scheduling
- Other Results

m processors, unit jobs, gaps [DG...’07]

Claim: WLOG, optimal schedule is compact:
1
2
3
4
5
6

m processors, unit jobs, gaps [DG...’07]

Claim: WLOG, optimal schedule is compact:
1
2
3
4
5
6

Proof: Suppose not:

1
2
3
4
5
6

m processors, unit jobs, gaps [DG...’07]

Claim: WLOG, optimal schedule is compact:
1
2
3
4
5
6

Proof: Suppose not:

1
2
3
4
5
6

m processors, unit jobs, gaps [DG...’07]

Claim: WLOG, optimal schedule is compact:
1
2
3
4
5
6

Proof: Suppose not:

1
2
3
4
5
6

?

m processors, unit jobs, gaps [DG...’07]

Claim: WLOG, optimal schedule is compact:
1
2
3
4
5
6

Proof: Suppose not:

1
2
3
4
5
6

m processors, unit jobs, gaps [DG...’07]

Claim: WLOG, optimal schedule is compact:
1
2
3
4
5
6

switch cannot increase # gaps, so repeat till schedule is compact

Proof: Suppose not:

1
2
3
4
5
6

Generalize Philippe’s partition trick: Sub-instance

m processors, unit jobs, gaps [DG...’07]

X

a

c

u v

b
X

Generalize Philippe’s partition trick: Sub-instance

m processors, unit jobs, gaps [DG...’07]

X

a

c

u v

b
X

e f

k

t

Generalize Philippe’s partition trick: Sub-instance

 Recurrence:

 Gk(u,a,b,v,c) = mint mine,f { G(...) + G(....) }

Running time O(n7m5) [DG...’07]

m processors, unit jobs, gaps [DG...’07]

X

a

c

u v

b
X

e f

k

t

Generalize Philippe’s partition trick: Sub-instance

 Recurrence:

 Gk(u,a,b,v,c) = mint mine,f { G(...) + G(....) }

Running time O(n7m5) [DG...’07]

Can be improved to O(n5m5) using smaller maximizer sets

m processors, unit jobs, gaps [DG...’07]

X

a

c

u v

b
X

e f

k

t

1 processor, agreeable [GJS’10]

1

2

3

4

5

ordered by
rj or dj

1 processor, agreeable [GJS’10]

Claim 1: Wlog, jobs execute in order 1, 2, 3, ...

1

2

3

4

5

ordered by
rj or dj

1 processor, agreeable [GJS’10]

Claim 1: Wlog, jobs execute in order 1, 2, 3, ...

Claim 2: Wlog, dj + pj+1 ≤ dj+1

1

2

3

4

5

ordered by
rj or dj

1 processor, agreeable [GJS’10]

Claim 1: Wlog, jobs execute in order 1, 2, 3, ...

Claim 2: Wlog, dj + pj+1 ≤ dj+1

j

j+1

1

2

3

4

5

ordered by
rj or dj

1 processor, agreeable [GJS’10]

Claim 1: Wlog, jobs execute in order 1, 2, 3, ...

Claim 2: Wlog, dj + pj+1 ≤ dj+1

j

j+1

1

2

3

4

5

ordered by
rj or dj

Algorithm GJS-L1SO:
 preprocess jobs as in Claim 2
 Schedule 1 at d1-p1
 for any other j
 if possible, schedule j right after j-1
 else schedule j at dj-pj

1 processor, agreeable [GJS’10]

Algorithm GJS-L1SO:
 preprocess jobs as in Claim 2
 Schedule 1 at d1-p1
 for any other j
 if possible, schedule j right after j-1
 else schedule j at dj-pj

1
2

3

4

5

1 processor, agreeable [GJS’10]

Algorithm GJS-L1SO:
 preprocess jobs as in Claim 2
 Schedule 1 at d1-p1
 for any other j
 if possible, schedule j right after j-1
 else schedule j at dj-pj

1

2

3

4

5

1 processor, agreeable [GJS’10]

Algorithm GJS-L1SO:
 preprocess jobs as in Claim 2
 Schedule 1 at d1-p1
 for any other j
 if possible, schedule j right after j-1
 else schedule j at dj-pj

1 2

3

4

5

1 processor, agreeable [GJS’10]

Algorithm GJS-L1SO:
 preprocess jobs as in Claim 2
 Schedule 1 at d1-p1
 for any other j
 if possible, schedule j right after j-1
 else schedule j at dj-pj

1 2 3

4

5

1 processor, agreeable [GJS’10]

Algorithm GJS-L1SO:
 preprocess jobs as in Claim 2
 Schedule 1 at d1-p1
 for any other j
 if possible, schedule j right after j-1
 else schedule j at dj-pj

1 2 3 4

5

1 processor, agreeable [GJS’10]

Algorithm GJS-L1SO:
 preprocess jobs as in Claim 2
 Schedule 1 at d1-p1
 for any other j
 if possible, schedule j right after j-1
 else schedule j at dj-pj

1 2 3 4 5

1 processor, agreeable [GJS’10]

Algorithm GJS-L1SO:
 preprocess jobs as in Claim 2
 Schedule 1 at d1-p1
 for any other j
 if possible, schedule j right after j-1
 else schedule j at dj-pj

1 2 3 4 5

1 processor, agreeable [GJS’10]

Running time: sorting + O(n) = O(n logn)

Open (Easy?) Questions

Open (Easy?) Questions

1. Back to sheep: if any group of ≤ g sheep dies,
minimize # of dead sheep

Open (Easy?) Questions

1. Back to sheep: if any group of ≤ g sheep dies,
minimize # of dead sheep

2. Or maximize minimum group size

Open (Easy?) Questions

1. Back to sheep: if any group of ≤ g sheep dies,
minimize # of dead sheep

2. Or maximize minimum group size
3. Several power levels

Open (Easy?) Questions

1. Back to sheep: if any group of ≤ g sheep dies,
minimize # of dead sheep

2. Or maximize minimum group size
3. Several power levels

4. For multiprocessors: each processor can be turned
off, or the whole system

Open (Easy?) Questions

1. Back to sheep: if any group of ≤ g sheep dies,
minimize # of dead sheep

2. Or maximize minimum group size
3. Several power levels

4. For multiprocessors: each processor can be turned
off, or the whole system

5. Faster algorithms? Can the case (unit jobs, gaps) be
solved in time O(n3)?

Open (Easy?) Questions

1. Back to sheep: if any group of ≤ g sheep dies,
minimize # of dead sheep

2. Or maximize minimum group size
3. Several power levels

4. For multiprocessors: each processor can be turned
off, or the whole system

5. Faster algorithms? Can the case (unit jobs, gaps) be
solved in time O(n3)?

6. Fast approximations: 1+ε-approx. in Õ(n) time?

Open (Easy?) Questions

1. Back to sheep: if any group of ≤ g sheep dies,
minimize # of dead sheep

2. Or maximize minimum group size
3. Several power levels

4. For multiprocessors: each processor can be turned
off, or the whole system

5. Faster algorithms? Can the case (unit jobs, gaps) be
solved in time O(n3)?

6. Fast approximations: 1+ε-approx. in Õ(n) time?

7. ...

