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How to Keep Sheep Warm 
in a Snow Storm? 



•  n sheep on a line huddle together to stay warm
•  Each sheep is chained
•  Objective: group sheep to minimize # of gaps
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partial grouping 2
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Intuition -- why naive algorithms can’t work ...
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partial grouping 1

partial grouping 2

3

Intuition -- why naive algorithms can’t work ...

How to Keep Sheep Warm in a Snow Storm? 

grouping 1 is better, so far ...
but only grouping 2 could be extensible to global optimum

tradeoff: # gaps vs gap sizes



• [aj,bj] = range of sheep j
• assume b1 ≤ b2 ≤ ... ≤ bn

• a gap with respect to interval [u,v]:
- internal gap or
- initial gap or
- final gap 

u v

3 gaps w.r.t. [u,v]

How to Keep Sheep Warm in a Snow Storm? 



GapsF(u,v) =

A

B
C

D

E
F

G
u v

How to Keep Sheep Warm in a Snow Storm? 

Instk(u,v)  = all sheep j ∊ {1,2,...,k} for which aj ∈ [u,v]

Gapsk(u,v) = min. number of gaps of Instk(u,v) w.r.t [u,v]  
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Instk(u,v)  = all sheep j ∊ {1,2,...,k} for which aj ∈ [u,v]

Gapsk(u,v) = min. number of gaps of Instk(u,v) w.r.t [u,v]  
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How to Keep Sheep Warm in a Snow Storm? 

Philippe’s Partition Principle: Wlog grouping looks like this:

k

u vt

Instk-1(u,t) = Instk-1(u,t-1) Instk-1(t+1,v) 

 (in particular, no ri at t, i ≠ k)



Case 2: ak ∈ [u,v], proof of PPP.

Fix an optimal grouping with maximum t (position of k)
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If j ∈ Instk-1(t+1,v):

Fix an optimal grouping with maximum t (position of k)
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u vtInstk-1(u,t) = 
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Philippe’s Partition Principle: Wlog grouping looks like this:

Recurrence for Gapsk(u,v)

Case 1: ak ∉ [u,v]. Then k ∉ Instk(u,v), so
Gapsk(u,v) = Gapsk-1(u,v)

Case 2: ak ∈ [u,v], so k ∈ Instk(u,v). 
If k is scheduled at time t then 
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How to Keep Sheep Warm in a Snow Storm? 

k

u vtInstk-1(u,t) = 
Instk-1(u,t-1)

Instk-1(t+1,v)

Philippe’s Partition Principle: Wlog grouping looks like this:

Recurrence for Gapsk(u,v)

Case 1: ak ∉ [u,v]. Then k ∉ Instk(u,v), so
Gapsk(u,v) = Gapsk-1(u,v)

Case 2: ak ∈ [u,v], so k ∈ Instk(u,v). 
If k is scheduled at time t then 

          Instk(u,v) = {k} ∪ Instk-1(u,t) ∪ Instk-1(t+1,v)

What’s t? Try all !!!
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Output Gapsn( amin-1 , bmax+1 )

Algorithm B0:
   if ak ∉ [u,v] then
             Gapsk(u,v) = Gapsk-1(u,v)
   if ak ∈ [u,v] then 
             Gapsk(u,v) = mint { Gapsk-1(u,t-1) + Gapsk-1(t+1,v) }                                        where ak ≤ t ≤ min(v,bt)



Time O( (n k’s)⋅(R u’s)⋅(R v’s)⋅(R t’s) ) = O(nR3) for R = bmax - amin
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Time O( (n k’s)⋅(R u’s)⋅(R v’s)⋅(R t’s) ) = O(nR3) for R = bmax - amin

Call set A a minimizer set if choosing u,v,t from A does not 
increase the solution

Can we find a smaller minimizer set?
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How to Keep Sheep Warm in a Snow Storm? 

Reducing minimizer sets 
shift each group right:

DC A B k
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B

C
D

k

bA±z, z ≤ n 

So {bj±z’s} = {bj±z : j, z ≤ n} is a minimizer set for t

| {bj±z’s} | = O(n2)



How to Keep Sheep Warm in a Snow Storm? 

Choose u,v,t from {bj±z’s}

So running time = O(n⋅n2⋅n2⋅n2 ) = O(n7)   [Baptiste, SODA’06]

Output Gapsn( amin-1 , bmax+1 )

Algorithm B1:
   if ak ∉ [u,v] then
             Gapsk(u,v) = Gapsk-1(u,v)
   if ak ∈ [u,v] then 
             Gapsk(u,v) = mint { Gapsk-1(u,t-1) + Gapsk-1(t+1,v) }                                        where ak ≤ t ≤ min(v,bt)



Minimum Energy Scheduling
- Overview 
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Instance: collection of n jobs
• job j has release time rj, deadline dj, processing time pj
• 1 unit of processing costs 1 unit of energy
• turning the system on costs L units of energy

Schedule = when each job is processed and when the 
processor is on

Objective: Compute a preemptive schedule that minimizes 
the total energy usage (assume instance is feasible)
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Minimum Energy Scheduling
Instance: collection of n jobs
• job j has release time rj, deadline dj, processing time pj
• 1 unit of processing costs 1 unit of energy
• turning the system on costs L units of energy

Schedule = when each job is processed and when the 
processor is on

Objective: Compute a preemptive schedule that minimizes 
the total energy usage (assume instance is feasible)

> L≤ L ≤ L ≤ L> L

idle busy

long shortStructure of an optimal schedule:

E = ∑gaps g min( length(g) , L )

objective function (ignore green time):
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For L = 1 and all pj = 1 :

• E = # of gaps
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• rj = aj and dj = bj
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Minimum Energy Scheduling

What sheep have to do with it?

For L = 1 and all pj = 1 :

• E = # of gaps

•       = 

• rj = aj and dj = bj

j

So the case (unit jobs, L ≤ 1)  can be solved in time O(n7) 



Minimum Energy Scheduling

What’s known?

# proc. L pj assumption time

1 any 1 O(n7) [B’06]
O(n4) [BCD’08]

1 any any O(n5) [BCD’08]
m any 1 O(n7m5) [DG...’07]
1 1 any agreeable O(nlogn) [GJS’10]
1 any 1 agreeable O(n3) [GJS’10]
m 1 1 agreeable O(n3m2] [GJS’10]

Posed as open: Sviridenko [05], Irani, Pruhs [05]

[B’06] = Baptiste
[BCD’08] = Baptiste, Chrobak, Dürr
[DG...’07] = Demaine, Ghodsi, Hajiaghayi, Sayedi-Roshkhar, Zadimoghaddam
[GJS’10] = Gururaj, Jalan, Stein
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# proc. L pj assumption time

1 any 1 O(n7) [B’06]
O(n4) [BCD’08]

1 any any O(n5) [BCD’08]
m any 1 O(n7m5) [DG...’07]
1 1 any agreeable O(nlogn) [GJS’10]
1 any 1 agreeable O(n3) [GJS’10]
m 1 1 agreeable O(n3m2] [GJS’10]

Posed as open: Sviridenko [05], Irani, Pruhs [05]

[B’06] = Baptiste
[BCD’08] = Baptiste, Chrobak, Dürr
[DG...’07] = Demaine, Ghodsi, Hajiaghayi, Sayedi-Roshkhar, Zadimoghaddam
[GJS’10] = Gururaj, Jalan, Stein

ri < rj ⇔ dj < dj
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Minimum Energy Scheduling

Main techniques:

✴ Philippe’s partitioning trick   √

✴ Reducing the minimizer sets

✴ Inversion trick (“large” parameter ⇔ “small” value)

✴ O(n2)-time reduction: Energy ≼ Gaps 



Reducing Minimizer Sets (L=1, pj=1)

k
u vt Instk-1(u,t)  Instk-1(t+1,v)

Reminder: u,v,t ∈ {dj±z} ,  | {dj±z} | = O(n2)

Output Gapsn( rmin-1 , dmax+1 )

Algorithm B1-L1P1:
   if rk ∉ [u,v-1] then
             Gapsk(u,v) = Gapsk-1(u,v)
   if rk ∈ [u,v-1] then 
             Gapsk(u,v) = mint { Gapsk-1(u,t) + Gapsk-1(t+1,v) }                                       where rk ≤ t < min(v,dt)
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Reducing Minimizer Sets (L=1, pj=1)

Three WLOG observations: 

k
u vt Instk-1(u,t)  Instk-1(t+1,v)

‣ t is maximum possible

‣ release times are different

‣ all deadlines are different 

➩

‣ v ≤ dk+1
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Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

If k scheduled last then Instk-1(t+1,v) is empty
So assume k is not last
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Reducing Minimizer Sets (L=1, pj=1)

Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

If k scheduled last then Instk-1(t+1,v) is empty
So assume k is not last

move k to later (possible, because dk is largest)        
         -- contradiction

t

Proof:  If not

Claim: There is j right after k

k
t

j

k



Reducing Minimizer Sets (L=1, pj=1)

Assume k ∈ Instk(u,v) and k scheduled at t (latest possible)

From claim: t = rj-1 
so
- minimizer set for t’s = {rj-1’s}
- minimizer set for u’s = {rjs}

If k scheduled last then Instk-1(t+1,v) is empty
So assume k is not last

Claim: There is j right after k

k
t

j



Reducing Minimizer Sets (L=1, pj=1)

Output Gapsn( rmin-1 , dmax+1 )

Algorithm B2-L1P1:
   if rk ∉ [u,v-1] then
             Gapsk(u,v) = Gapsk-1(u,v)
   if rk ∈ [u,v-1] then 
                               Gapsk-1(u,v-1)                     Gapsk(u,v) = min 
                               mint { Gapsk-1(u,t) + Gapsk-1(t+1,v) }                                          where ak ≤ t < min(v,dt)

Above, choose: u ∈ {rj’s} , t ∈ {rj+1’s} and v ∈ {dj±z’s}

⇒ Running time = O( (n k’s)⋅(n u’s)⋅(n2 v’s)⋅(n t’s) ) = O(n5)



Minimum Energy Scheduling

Main techniques:

✴ Philippe’s partitioning trick   √

✴ Reducing the minimizer sets √

✴ Inversion trick (“large” parameter ⇔ “small” value)

✴ O(n2)-time reduction: Energy ≼ Gaps 



Inversion Trick

Consider a function F(a,...) = min{f : Yaddi-Yadda(a,f,...)} s.t.
• F(a,...) is monotone w.r.t. a 
• range of a is large (exponential)
• range of F(a,...) is small (polynomial)

a

f
Yaddi-Yadda(a,f,...)

F(a,...)

a



Inversion Trick

Instead compute A(f,...) = min{a : Yaddi-Yadda(a,f,...)}

and then F(a,...) = min{f : A(f,...) ≥ a}
            (binary search ....)

Consider a function F(a,...) = min{f : Yaddi-Yadda(a,f,...)} s.t.
• F(a,...) is monotone w.r.t. a 
• range of a is large (exponential)
• range of F(a,...) is small (polynomial)

f

A(f,...) a

f
Yaddi-Yadda(a,f,...)



Example 1: Extending Algorithm B2L1P1 (minimizing # 
gaps,unit jobs) to arbitrary processing times 
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• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
•  Ak,g(u,v) = minimum amount p of job k for which
               Instk,p(u,v) has a schedule with ≤ g gaps
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• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
•  Ak,g(u,v) = minimum amount p of job k for which
               Instk,p(u,v) has a schedule with ≤ g gaps

Assume not whole k executed at the end:
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busy before and after t
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Assume not whole k executed at the end:

t
k k k

u v

f gaps h gaps where f+h = g

  Ak,h(t,v) units of kCk-1,f(u,t) 

Ak,g(u,v) = mint minf+h=g ( t - Ck-1,f(u,t) + Ak,h(t,v) )
where t ∈ {rj}, u ∈ {rj}, v ∈ {dj±z}

Also, we need recurrence for Ck,f(u,v) using A(...)

Running time O(n7)

Inversion Trick ( any pj, gaps)

• Instk,p(u,v) = jobs 1,2,...,k with rj ∈ [u,v-1], and with pk ← p
•  Ak,g(u,v) = minimum amount p of job k for which
               Instk,p(u,v) has a schedule with ≤ g gaps
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Inversion Trick ( unit jobs, gaps, but faster)

Example 2: Speeding up the unit/gaps case to O(n4)

Gk(u,v) = mint { # gaps : yaddi yadda }

Invert: compute

   Vk(u,g) = max { v : Instk(u,v) has schedule with g gaps }

O(n)
O(n) O(n2)

O(n) values
O(n)

Can be extended to any pj‘s in time O(n5)  [BCD’08]

Gives O(n4)  [BCD’08]



Minimum Energy Scheduling

Main techniques:

✴ Philippe’s partitioning trick   √

✴ Reducing the minimizer sets √

✴ Inversion trick (“large” parameter ⇔ “small” value) √

✴ O(n2)-time reduction: Energy ≼ Gaps 



Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule 
[u,v) = short gap in S

Claim: wlog, if rj < v then j is executed before v



Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule 
[u,v) = short gap in S

Claim: wlog, if rj < v then j is executed before v

≤ L

j

S

u v

Proof: suppose not

j



Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule 
[u,v) = short gap in S

Claim: wlog, if rj < v then j is executed before v

≤ L

j

S

u v

Proof: suppose not

j



Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule 
[u,v) = short gap in S

Claim: wlog, if rj < v then j is executed before v

Then E(new S) ≤ E(S) and new S is lex-smaller than S
 -- contradiction

≤ L

j

S

u v

Proof: suppose not

j



Reduction: Energy ≼ Gaps

S = lex-minimal energy optimal schedule 
[u,v) = short gap in S

So S looks like this

≤ L

m

u v = rm

jobs released before v jobs released at or after v

no release
 times
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Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule 
So S looks like this:

S
> L > L > L

Inst(u,v)

u = rs v = rj

schedule with G(u,v) gaps and
maximum completion time C(u,v)

Denote Es = minimum energy schedule of jobs released ≥ rs
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Reduction: Energy ≼ Gaps

S = lex-minimal energy-optimal schedule 
So S looks like this:

S
> L > L > L

Inst(u,v)

u = rs v = rj

schedule with G(u,v) gaps and
maximum completion time C(u,v)

Denote Es = minimum energy schedule of jobs released ≥ rs

Es = min  { L⋅[ G(rs,rj)-1 ] + [ rj-C(rs,rj) ] + Ej } 
     rj > rs

Running time: O(n2) + (time to compute all G(), C() values)



Minimum Energy Scheduling

Main techniques:

✴ Philippe’s partitioning trick   √

✴ Reducing the minimizer sets √

✴ Inversion trick (“large” parameter ⇔ “small” value) √

✴ O(n2)-time reduction: Energy ≼ Gaps √



Minimum Energy Scheduling
- Other Results
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m processors, unit jobs, gaps [DG...’07]

Claim: WLOG, optimal schedule is compact: 
1
2
3
4
5
6

switch cannot increase # gaps, so repeat till schedule is compact

Proof: Suppose not:

1
2
3
4
5
6
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Generalize Philippe’s partition trick: Sub-instance

 Recurrence:

        Gk(u,a,b,v,c) = mint mine,f { G( ... ) + G( .... ) }

Running time O(n7m5)  [DG...’07]  
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Generalize Philippe’s partition trick: Sub-instance

 Recurrence:

        Gk(u,a,b,v,c) = mint mine,f { G( ... ) + G( .... ) }

Running time O(n7m5)  [DG...’07]  

Can be improved to O(n5m5) using smaller maximizer sets

m processors, unit jobs, gaps [DG...’07]
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Algorithm GJS-L1SO:
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   Schedule 1 at d1-p1
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Algorithm GJS-L1SO:
   preprocess jobs as in Claim 2
   Schedule 1 at d1-p1
   for any other j
       if possible, schedule j right after j-1
       else schedule j at dj-pj

1 2 3 4 5

1 processor, agreeable [GJS’10]

Running time: sorting + O(n)  = O(n logn)
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Open (Easy?) Questions 

1.  Back to sheep: if any group of ≤ g sheep dies, 
minimize # of dead sheep

2.  Or maximize minimum group size
3.  Several power levels

4.  For multiprocessors: each processor can be turned 
off, or the whole system

5.  Faster algorithms? Can the case (unit jobs, gaps) be 
solved in time O(n3)?

6.  Fast approximations: 1+ε-approx. in Õ(n) time?

7.  ...


