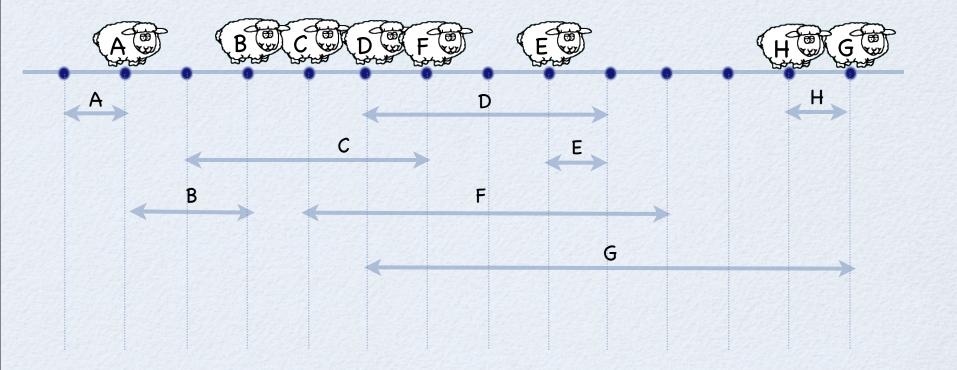
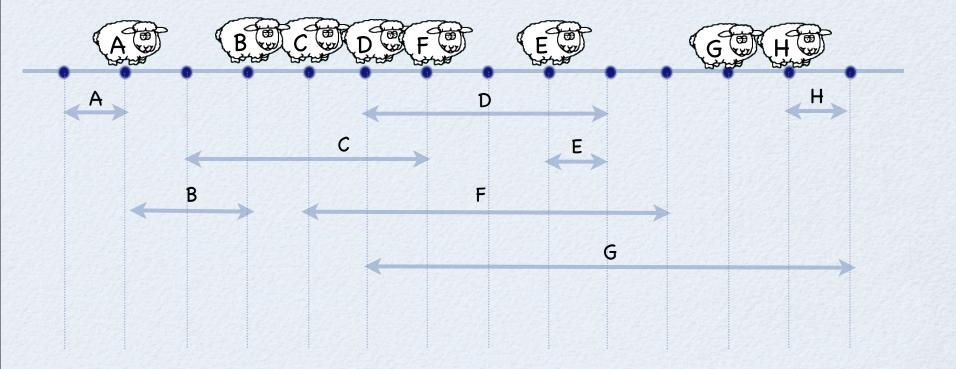
Minimum Energy Scheduling

Marek Chrobak University of California, Riverside

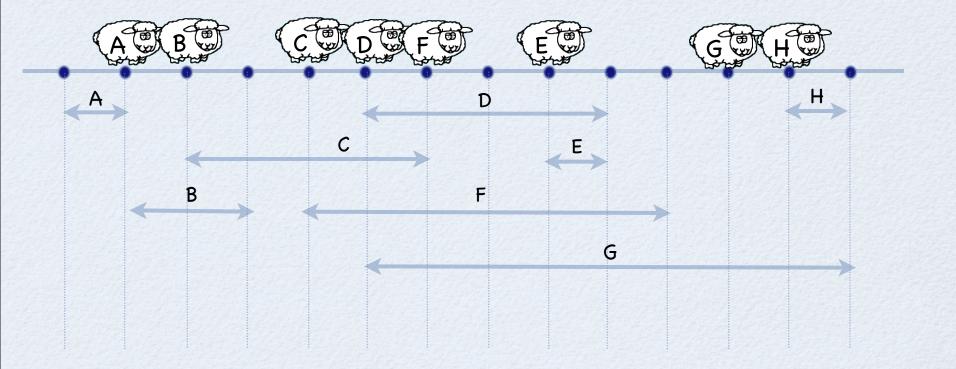
- n sheep on a line huddle together to stay warm
- Each sheep is chained
- Objective: group sheep to minimize # of gaps



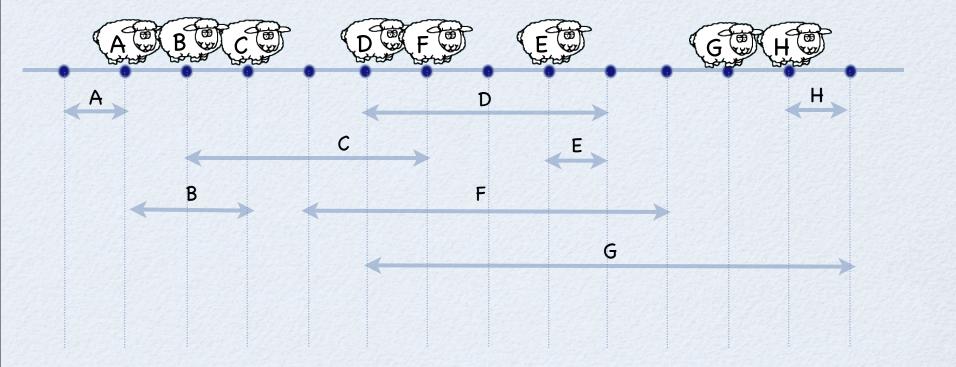
- n sheep on a line huddle together to stay warm
- Each sheep is chained
- Objective: group sheep to minimize # of gaps



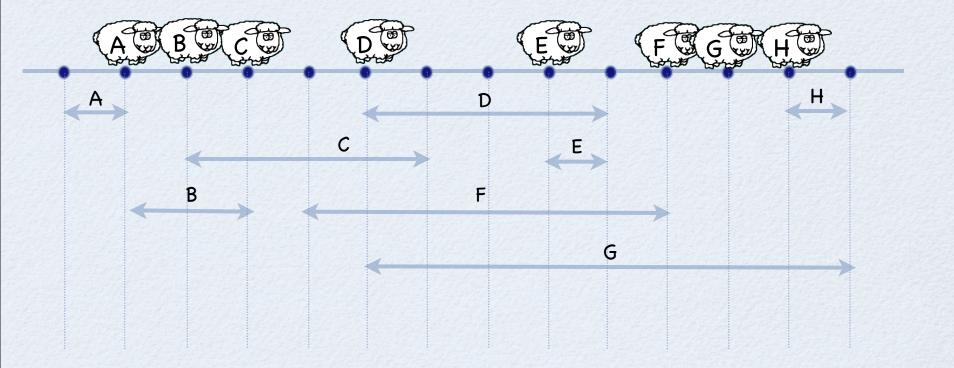
- n sheep on a line huddle together to stay warm
- Each sheep is chained
- Objective: group sheep to minimize # of gaps



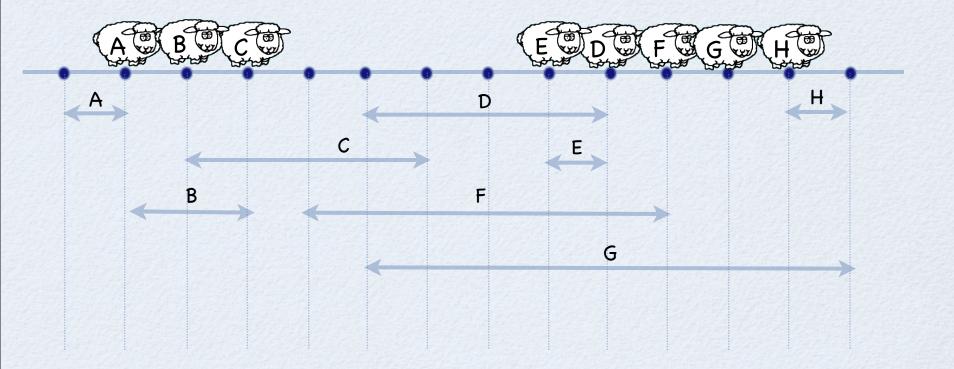
- n sheep on a line huddle together to stay warm
- Each sheep is chained
- Objective: group sheep to minimize # of gaps



- n sheep on a line huddle together to stay warm
- Each sheep is chained
- Objective: group sheep to minimize # of gaps



- n sheep on a line huddle together to stay warm
- Each sheep is chained
- Objective: group sheep to minimize # of gaps



How to Keep Sheep Warm in a Snow Storm? Intuition -- why naive algorithms can't work ... partial grouping 1 (303) (30

THE THE

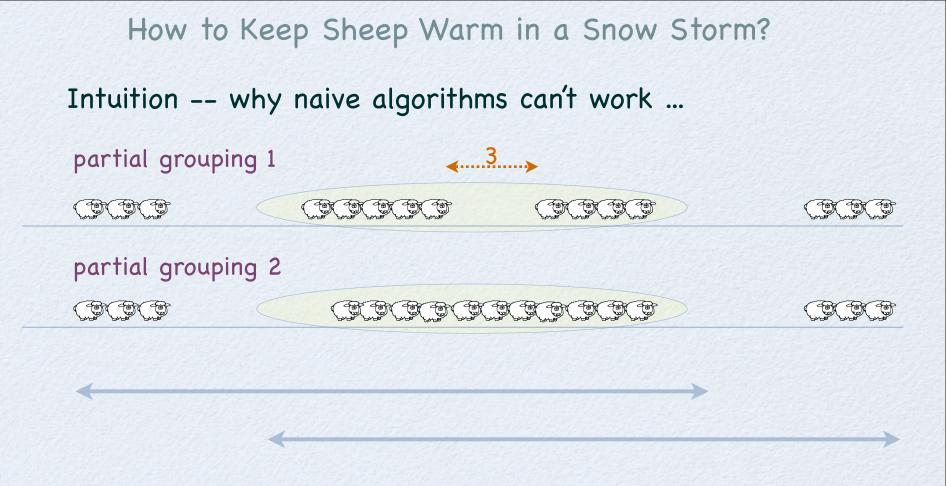
TR TR T

EF EF

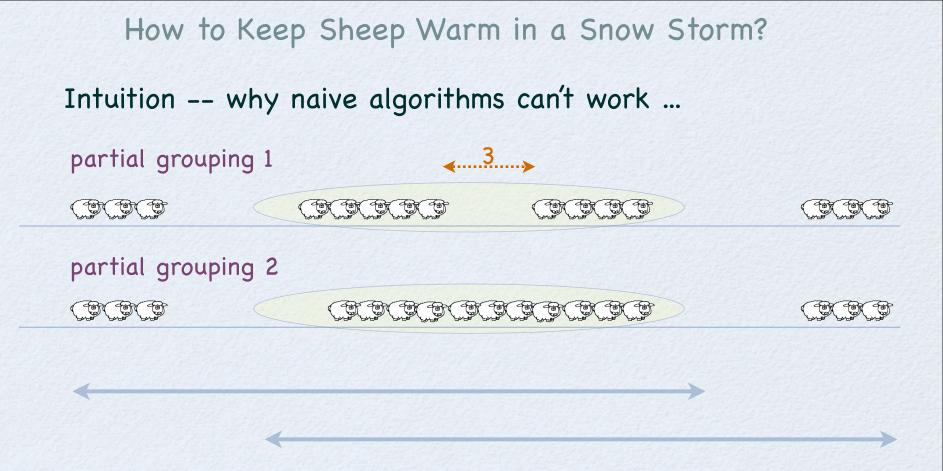
grouping 1 is better, so far ...

How to Keep Sheep Warm in a Snow Storm? Intuition -- why naive algorithms can't work ... partial grouping 1 **∢**....**>** partial grouping 2 (DCDCD (TT (m) Contraction of the second The second

grouping 1 is better, so far ...

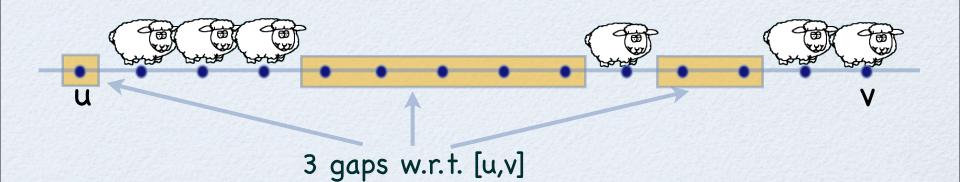


grouping 1 is better, so far ...

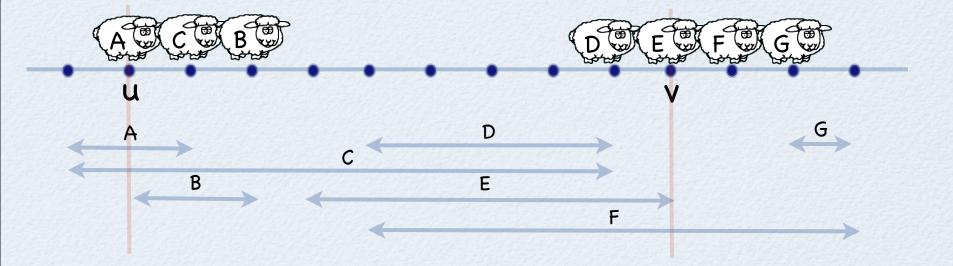


grouping 1 is better, so far ... but only grouping 2 could be extensible to global optimum tradeoff: # gaps vs gap sizes

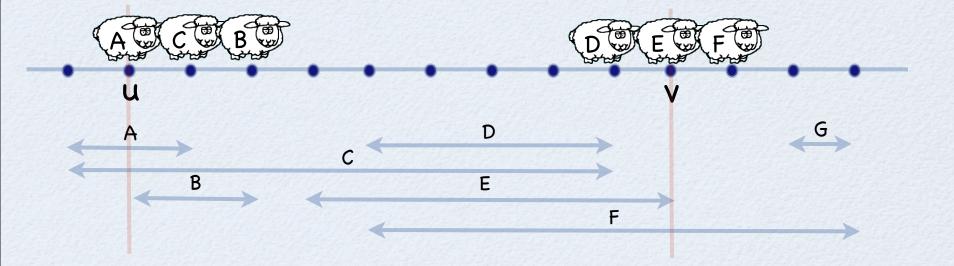
- [a_j,b_j] = range of sheep j
- assume $b_1 \leq b_2 \leq ... \leq b_n$
- a gap with respect to interval [u,v]:
 - internal gap or
 - initial gap or
 - final gap



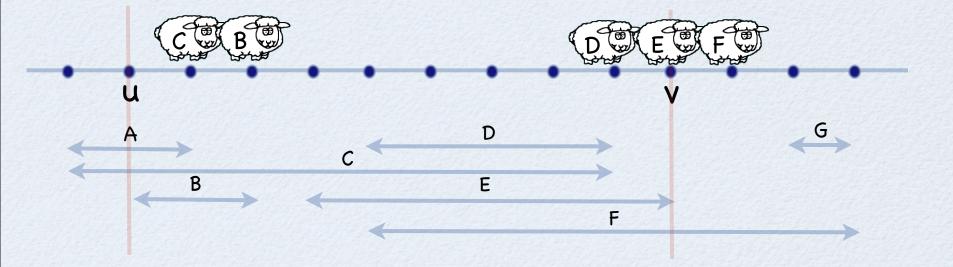
 $Inst_k(u,v) = all sheep j \in \{1,2,...,k\} \text{ for which } a_j \in [u,v]$ $Gaps_k(u,v) = min. \text{ number of gaps of } Inst_k(u,v) \text{ w.r.t } [u,v]$



 $Inst_k(u,v) = all sheep j \in \{1,2,...,k\} \text{ for which } a_j \in [u,v]$ $Gaps_k(u,v) = min. \text{ number of gaps of } Inst_k(u,v) \text{ w.r.t } [u,v]$



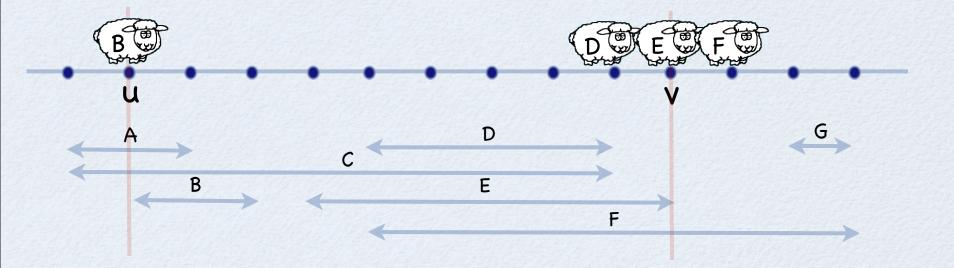
 $Inst_k(u,v) = all sheep j \in \{1,2,...,k\} \text{ for which } a_j \in [u,v]$ $Gaps_k(u,v) = min. \text{ number of gaps of } Inst_k(u,v) \text{ w.r.t } [u,v]$



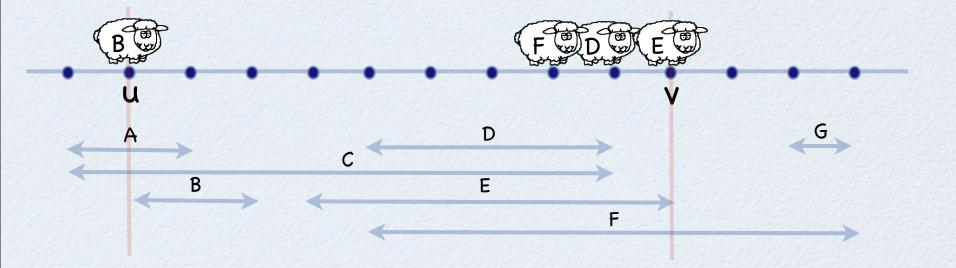
 $Inst_k(u,v) = all sheep j \in \{1,2,...,k\} \text{ for which } a_j \in [u,v]$ $Gaps_k(u,v) = min. \text{ number of gaps of } Inst_k(u,v) \text{ w.r.t } [u,v]$



 $Inst_k(u,v) = all sheep j \in \{1,2,...,k\} \text{ for which } a_j \in [u,v]$ $Gaps_k(u,v) = min. \text{ number of gaps of } Inst_k(u,v) \text{ w.r.t } [u,v]$



 $Inst_k(u,v) = all sheep j \in \{1,2,...,k\} \text{ for which } a_j \in [u,v]$ $Gaps_k(u,v) = min. \text{ number of gaps of } Inst_k(u,v) \text{ w.r.t } [u,v]$



Recurrence for Gaps_k(u,v)

Recurrence for Gaps_k(u,v)

```
Case 1: a_k \notin [u,v]. Then k \notin Inst_k(u,v), so
Gaps<sub>k</sub>(u,v) = Gaps<sub>k-1</sub>(u,v)
```

Recurrence for Gaps_k(u,v)

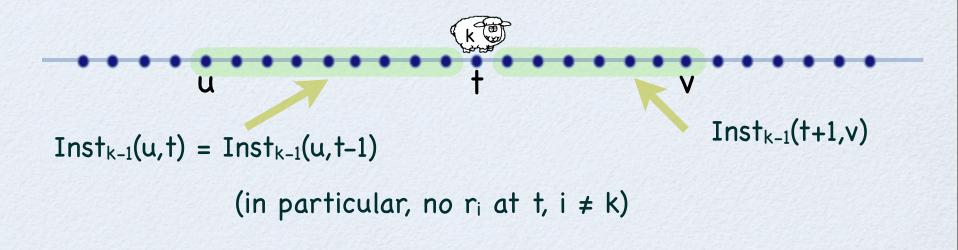
```
Case 1: a_k \notin [u,v]. Then k \notin Inst_k(u,v), so
Gaps<sub>k</sub>(u,v) = Gaps<sub>k-1</sub>(u,v)
```

```
Case 2: a_k \in [u,v], so k \in Inst_k(u,v).
If k is scheduled at time t then
Inst_k(u,v) = \{k\} \cup Inst_{k-1}(u,t) \cup Inst_{k-1}(t+1,v)
```

Recurrence for Gaps_k(u,v)

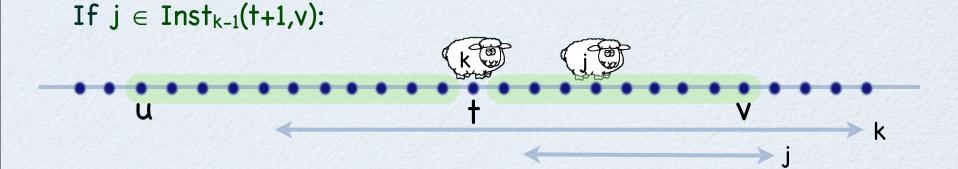
Case 1:
$$a_k \notin [u,v]$$
. Then $k \notin Inst_k(u,v)$, so
Gaps_k(u,v) = Gaps_{k-1}(u,v)

Case 2:
$$a_k \in [u,v]$$
, so $k \in Inst_k(u,v)$.
If k is scheduled at time t then
 $Inst_k(u,v) = \{k\} \cup Inst_{k-1}(u,t) \cup Inst_{k-1}(t+1,v)$

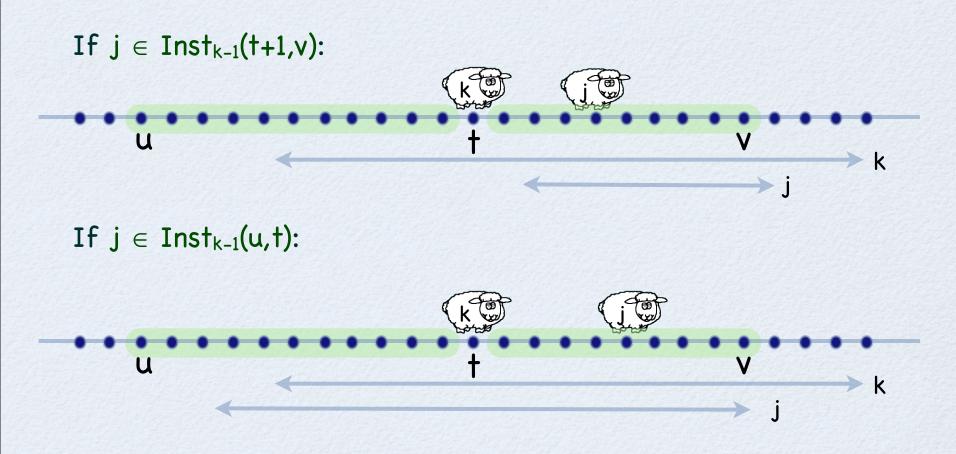


Case 2: $a_k \in [u,v]$, proof of PPP.

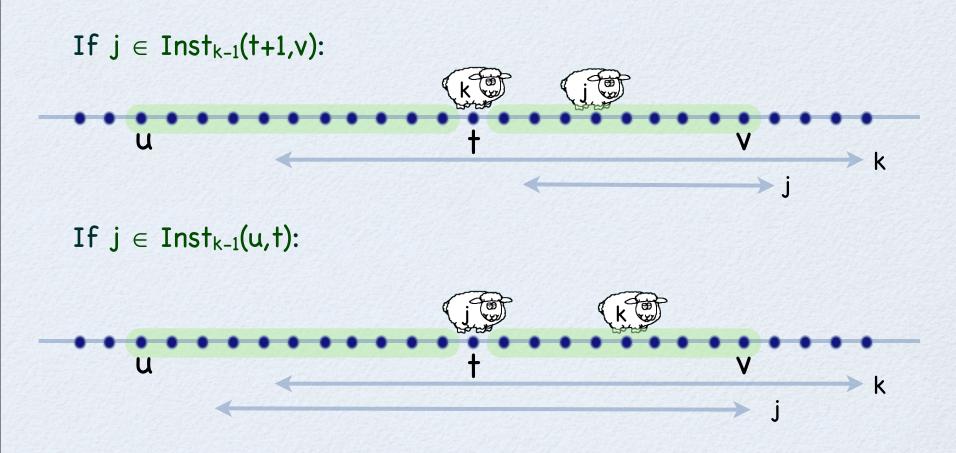
Case 2: $a_k \in [u,v]$, proof of PPP.



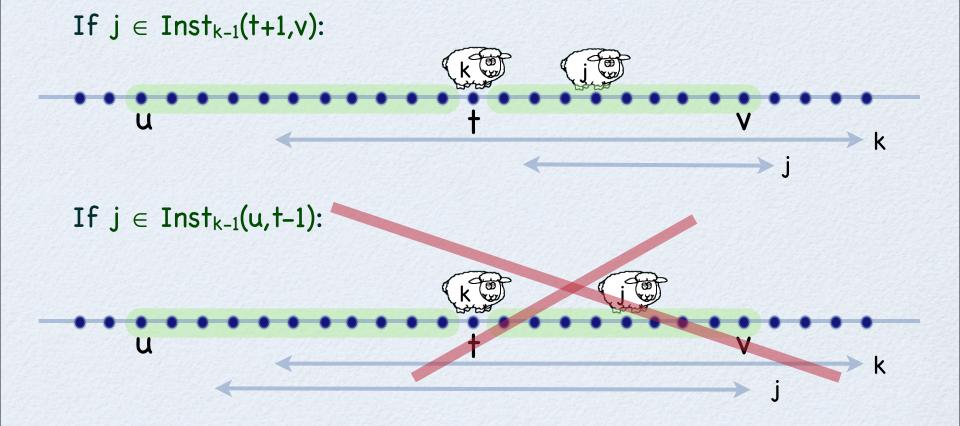
Case 2: $a_k \in [u,v]$, proof of PPP.



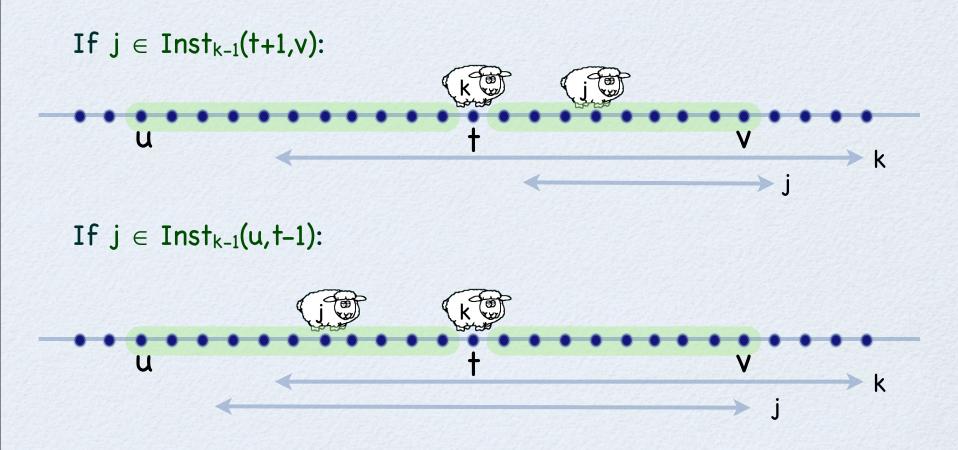
Case 2: $a_k \in [u,v]$, proof of PPP.



Case 2: $a_k \in [u,v]$, proof of PPP.



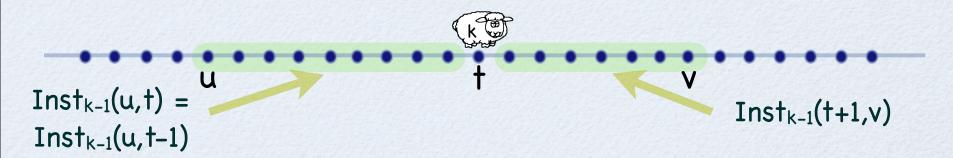
Case 2: $a_k \in [u,v]$, proof of PPP.



Recurrence for Gaps_k(u,v)

Case 1:
$$a_k \notin [u,v]$$
. Then $k \notin Inst_k(u,v)$, so
Gaps_k(u,v) = Gaps_{k-1}(u,v)

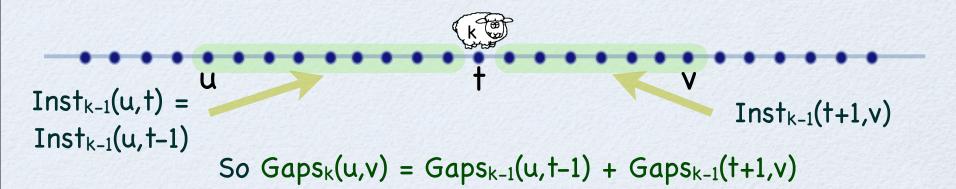
Case 2:
$$a_k \in [u,v]$$
, so $k \in Inst_k(u,v)$.
If k is scheduled at time t then
 $Inst_k(u,v) = \{k\} \cup Inst_{k-1}(u,t) \cup Inst_{k-1}(t+1,v)$



Recurrence for Gaps_k(u,v)

Case 1:
$$a_k \notin [u,v]$$
. Then $k \notin Inst_k(u,v)$, so
Gaps_k(u,v) = Gaps_{k-1}(u,v)

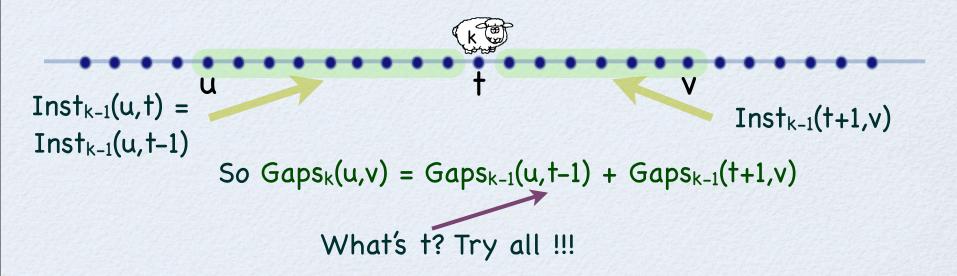
Case 2:
$$a_k \in [u,v]$$
, so $k \in Inst_k(u,v)$.
If k is scheduled at time t then
 $Inst_k(u,v) = \{k\} \cup Inst_{k-1}(u,t) \cup Inst_{k-1}(t+1,v)$



Recurrence for Gaps_k(u,v)

Case 1:
$$a_k \notin [u,v]$$
. Then $k \notin Inst_k(u,v)$, so
Gaps_k(u,v) = Gaps_{k-1}(u,v)

Case 2:
$$a_k \in [u,v]$$
, so $k \in Inst_k(u,v)$.
If k is scheduled at time t then
 $Inst_k(u,v) = \{k\} \cup Inst_{k-1}(u,t) \cup Inst_{k-1}(t+1,v)$



```
Algorithm BO:

if a_k \notin [u,v] then

Gaps_k(u,v) = Gaps_{k-1}(u,v)

if a_k \in [u,v] then

Gaps_k(u,v) = min_t \{ Gaps_{k-1}(u,t-1) + Gaps_{k-1}(t+1,v) \}

where a_k \leq t \leq min(v,b_t)

Output Gaps_n(a_{min}-1, b_{max}+1)
```

```
Algorithm BO:

if a_k \notin [u,v] then

Gaps_k(u,v) = Gaps_{k-1}(u,v)

if a_k \in [u,v] then

Gaps_k(u,v) = min_t \{ Gaps_{k-1}(u,t-1) + Gaps_{k-1}(t+1,v) \}

where a_k \leq t \leq min(v,b_t)

Output Gaps_n(a_{min}-1, b_{max}+1)
```

Time O((n k's) \cdot (R u's) \cdot (R v's) \cdot (R t's)) = O(nR³) for R = $b_{max} - a_{min}$

```
Algorithm BO:

if a_k \notin [u,v] then

Gaps_k(u,v) = Gaps_{k-1}(u,v)

if a_k \in [u,v] then

Gaps_k(u,v) = min_t \{ Gaps_{k-1}(u,t-1) + Gaps_{k-1}(t+1,v) \}

where a_k \leq t \leq min(v,b_t)

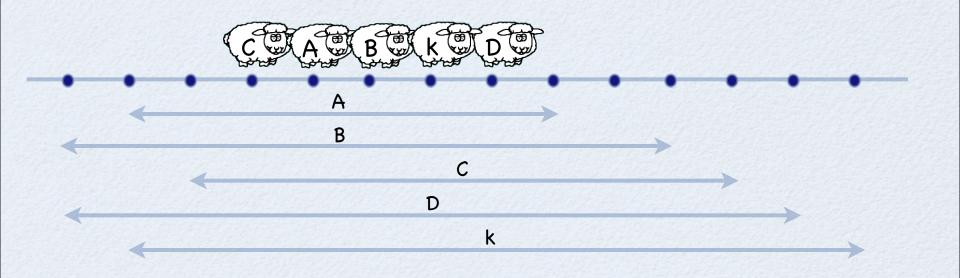
Output Gaps_n(a_{min}-1, b_{max}+1)
```

Time O((n k's) \cdot (R u's) \cdot (R v's) \cdot (R t's)) = O(nR³) for R = $b_{max} - a_{min}$

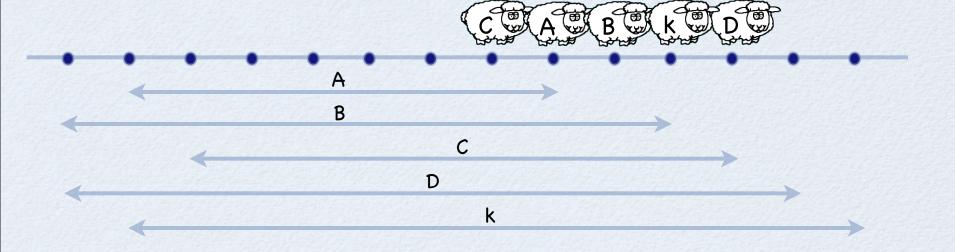
Call set A a minimizer set if choosing u,v,t from A does not increase the solution

Can we find a smaller minimizer set?

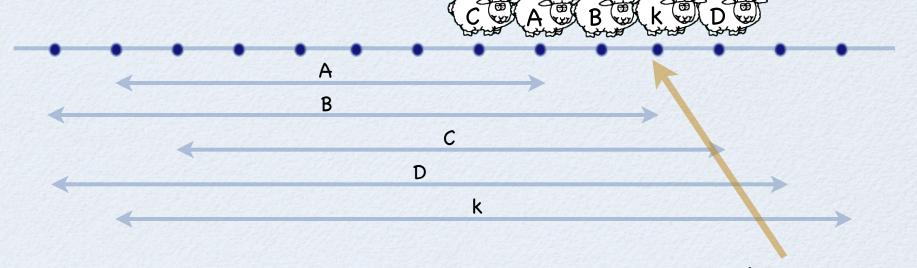
Reducing minimizer sets



Reducing minimizer sets shift each group right:

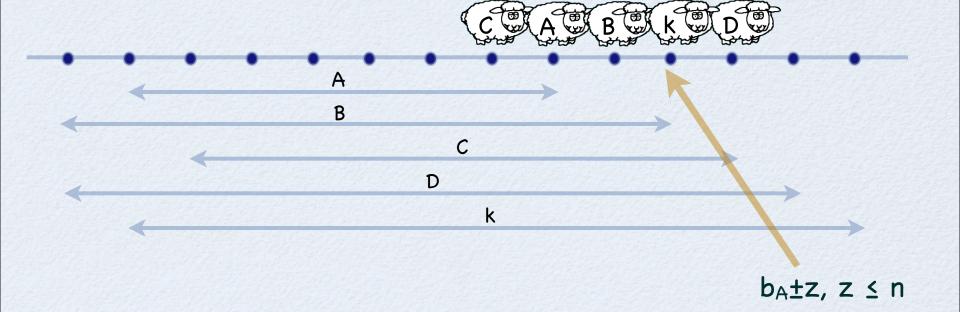


Reducing minimizer sets shift each group right:



 $b_A \pm z, z \leq n$

Reducing minimizer sets shift each group right:



So $\{b_j \pm z's\} = \{b_j \pm z : j, z \le n\}$ is a minimizer set for t

 $| \{b_j \pm z's\} | = O(n^2)$

```
Algorithm B1:

if a_k \notin [u,v] then

Gaps_k(u,v) = Gaps_{k-1}(u,v)

if a_k \in [u,v] then

Gaps_k(u,v) = min_t \{ Gaps_{k-1}(u,t-1) + Gaps_{k-1}(t+1,v) \}

where a_k \leq t \leq min(v,b_t)

Output Gaps_n(a_{min}-1, b_{max}+1)
```

Choose u,v,t from {bj±z's}

So running time = $O(n \cdot n^2 \cdot n^2 \cdot n^2) = O(n^7)$ [Baptiste, SODA'06]

Minimum Energy Scheduling - Overview

Instance: collection of n jobs

- job j has release time r_j, deadline d_j, processing time p_j
- 1 unit of processing costs 1 unit of energy
- turning the system on costs L units of energy

Schedule = when each job is processed and when the processor is on

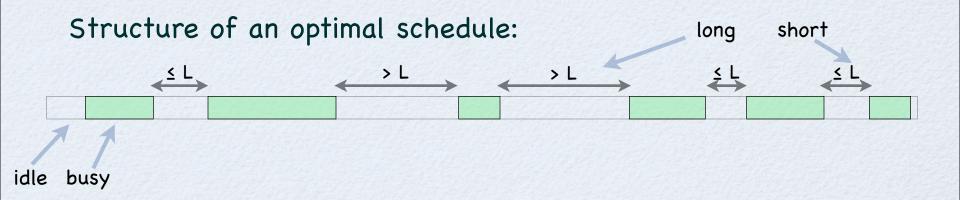
Objective: Compute a preemptive schedule that minimizes the total energy usage (assume instance is feasible)

Instance: collection of n jobs

- job j has release time r_j, deadline d_j, processing time p_j
- 1 unit of processing costs 1 unit of energy
- turning the system on costs L units of energy

Schedule = when each job is processed and when the processor is on

Objective: Compute a preemptive schedule that minimizes the total energy usage (assume instance is feasible)

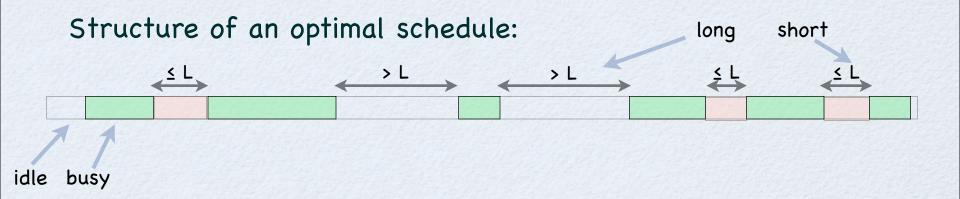


Instance: collection of n jobs

- job j has release time r_j, deadline d_j, processing time p_j
- 1 unit of processing costs 1 unit of energy
- turning the system on costs L units of energy

Schedule = when each job is processed and when the processor is on

Objective: Compute a preemptive schedule that minimizes the total energy usage (assume instance is feasible)

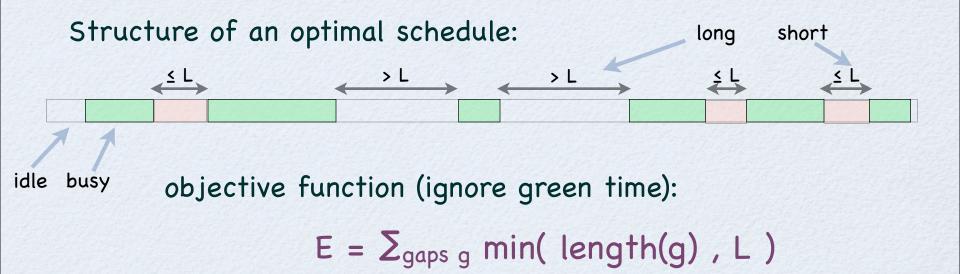


Instance: collection of n jobs

- job j has release time r_j, deadline d_j, processing time p_j
- 1 unit of processing costs 1 unit of energy
- turning the system on costs L units of energy

Schedule = when each job is processed and when the processor is on

Objective: Compute a preemptive schedule that minimizes the total energy usage (assume instance is feasible)



What sheep have to do with it?

For L = 1 and all $p_j = 1$:

- E = # of gaps
- j =
- $r_j = a_j$ and $d_j = b_j$

What sheep have to do with it?

For L = 1 and all $p_j = 1$:

- E = # of gaps
- j =
- $r_j = a_j$ and $d_j = b_j$

So the case (unit jobs, $L \leq 1$) can be solved in time $O(n^7)$

What's known?

Posed as open: Sviridenko [05], Irani, Pruhs [05]

# proc.	L	Рј	assumption	time
1	any	1		O(n ⁷) [B'06] O(n ⁴) [BCD'08]
1	any	any		O(n ⁵) [BCD'08]
m	any	1		O(n ⁷ m ⁵) [DG'07]
1	1	any	agreeable	O(nlogn) [GJS'10]
1	any	1	agreeable	O(n ³) [GJS'10]
m	1	1	agreeable	O(n ³ m ²] [GJS'10]

[B'06] = Baptiste [BCD'08] = Baptiste, Chrobak, Dürr [DG...'07] = Demaine, Ghodsi, Hajiaghayi, Sayedi-Roshkhar, Zadimoghaddam [GJS'10] = Gururaj, Jalan, Stein

What's known?

Posed as open: Sviridenko [05], Irani, Pruhs [05]

# proc.	L	Рј	assumption	time
1	any	1		O(n ⁷) [B'06] O(n ⁴) [BCD'08]
1	any	any		O(n ⁵) [BCD'08]
m	any	1		O(n ⁷ m ⁵) [DG'07]
1	1	any	agreeable	O(nlogn) [GJS'10]
1	any	1	agreeable	O(n ³) [GJS'10]
m	1	1	agreeable	O(n ³ m ²] [GJS'10]

[B'06] = Baptiste [BCD'08] = Baptiste, Chrobak, Dürr [DG...'07] = Demaine, Ghodsi, Hajiaghayi, Sayedi-Roshkhar, Zadimoghaddam [GJS'10] = Gururaj, Jalan, Stein

Minimum Energy Scheduling – Techniques

Main techniques:

- * Philippe's partitioning trick \checkmark
- * Reducing the minimizer sets
- * Inversion trick ("large" parameter ⇔ "small" value)
- * $O(n^2)$ -time reduction: Energy \leq Gaps

```
Algorithm B1-L1P1:

if r_k \notin [u,v-1] then

Gaps<sub>k</sub>(u,v) = Gaps<sub>k-1</sub>(u,v)

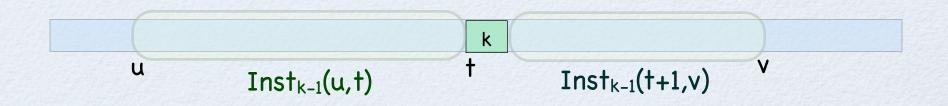
if r_k \in [u,v-1] then

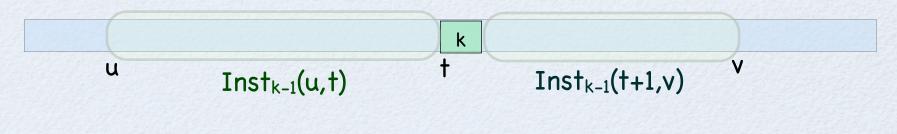
Gaps<sub>k</sub>(u,v) = min<sub>t</sub> { Gaps<sub>k-1</sub>(u,t) + Gaps<sub>k-1</sub>(t+1,v) }

where r_k \leq t < min(v,d_t)

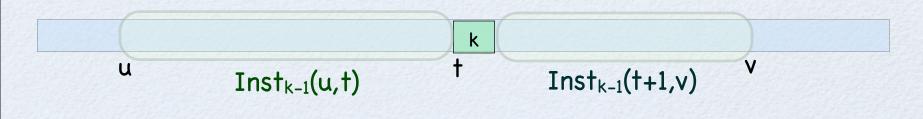
Output Gaps<sub>n</sub>(r_{min}-1, d_{max}+1)
```

Reminder: u,v,t $\in \{d_j \pm z\}$, | $\{d_j \pm z\}$ | = $O(n^2)$



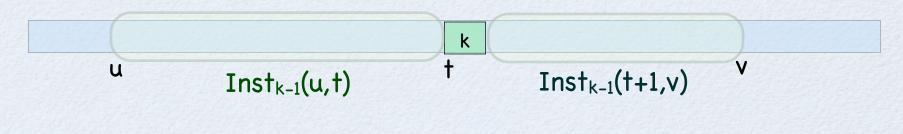


Three WLOG observations:



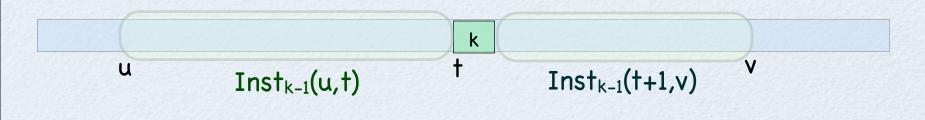
Three WLOG observations:

t is maximum possible



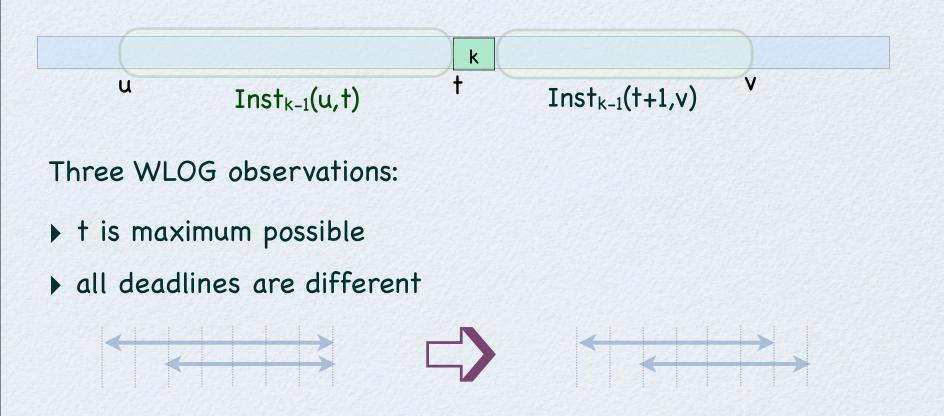
Three WLOG observations:

- t is maximum possible
- all deadlines are different

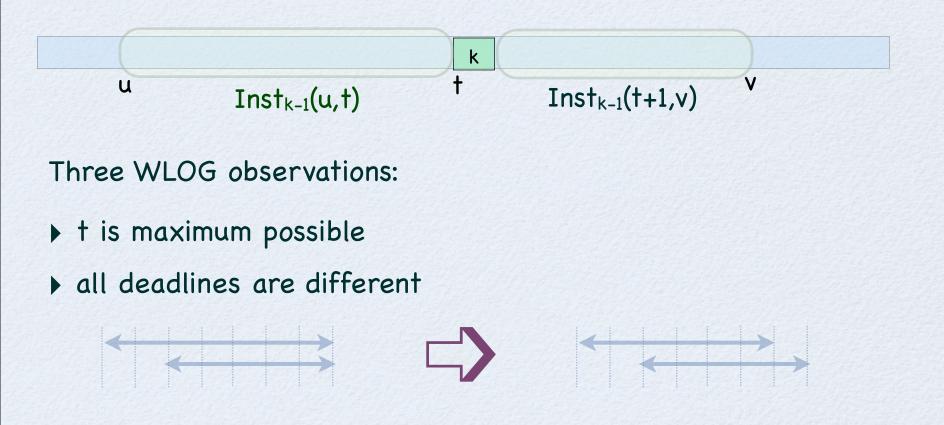


Three WLOG observations:

- t is maximum possible
- all deadlines are different



release times are different



- release times are different
- ▶ $v \leq d_k+1$

Assume $k \in Inst_k(u,v)$ and k scheduled at t (latest possible)

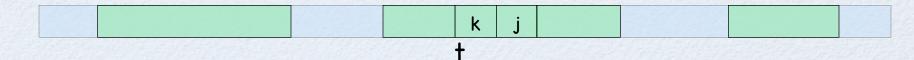
Assume $k \in Inst_k(u,v)$ and k scheduled at t (latest possible)

If k scheduled last then $Inst_{k-1}(t+1,v)$ is empty So assume k is not last

Assume $k \in Inst_k(u,v)$ and k scheduled at t (latest possible)

If k scheduled last then $Inst_{k-1}(t+1,v)$ is empty So assume k is not last

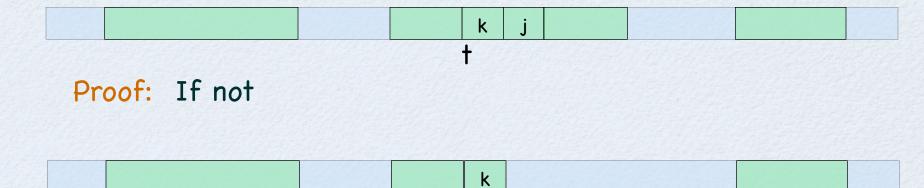
Claim: There is j right after k



Assume $k \in Inst_k(u,v)$ and k scheduled at t (latest possible)

If k scheduled last then $Inst_{k-1}(t+1,v)$ is empty So assume k is not last

Claim: There is j right after k

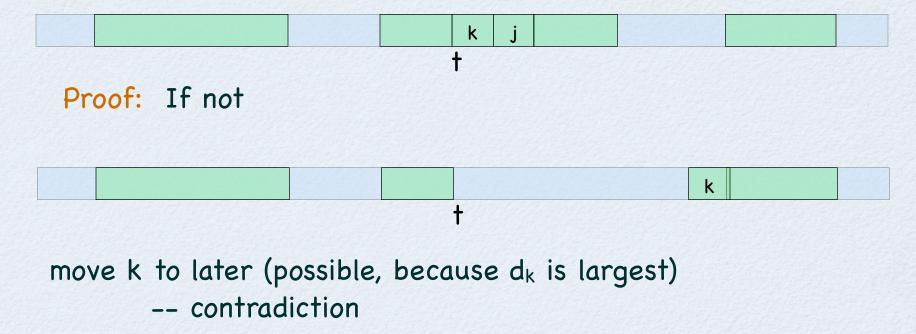


t

Assume $k \in Inst_k(u,v)$ and k scheduled at t (latest possible)

If k scheduled last then $Inst_{k-1}(t+1,v)$ is empty So assume k is not last

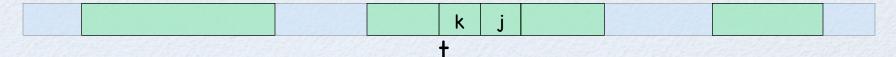
Claim: There is j right after k



Assume $k \in Inst_k(u,v)$ and k scheduled at t (latest possible)

If k scheduled last then $Inst_{k-1}(t+1,v)$ is empty So assume k is not last

Claim: There is j right after k



```
From claim: t = r_j - 1
```

SO

- minimizer set for t's = $\{r_j-1's\}$
- minimizer set for u's = $\{r_js\}$

```
Algorithm B2-L1P1:

if r_k \notin [u,v-1] then

Gaps_k(u,v) = Gaps_{k-1}(u,v)

if r_k \in [u,v-1] then

Gaps_k(u,v) = min

Gaps_{k-1}(u,v-1)

min_t \{ Gaps_{k-1}(u,t) + Gaps_{k-1}(t+1,v) \}

where a_k \leq t < min(v,d_t)

Output Gaps_n(r_{min}-1, d_{max}+1)
```

Above, choose: $u \in \{r_j \le \}$, $t \in \{r_j+1 \le \}$ and $v \in \{d_j \pm z \le \}$

 \Rightarrow Running time = O((n k's) · (n u's) · (n² v's) · (n t's)) = O(n⁵)

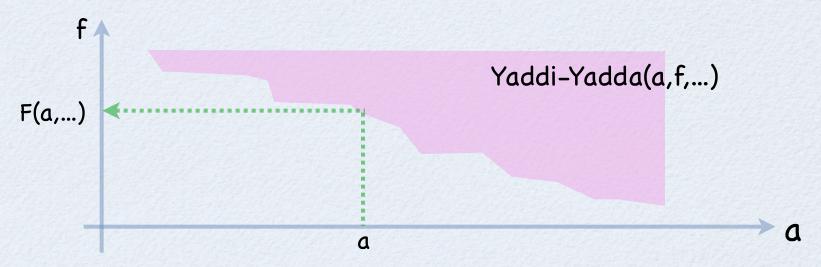
Main techniques:

- * Philippe's partitioning trick \checkmark
- * Reducing the minimizer sets \checkmark
- * Inversion trick ("large" parameter ⇔ "small" value)
- * $O(n^2)$ -time reduction: Energy \leq Gaps

Inversion Trick

Consider a function F(a,...) = min{f : Yaddi-Yadda(a,f,...)} s.t.

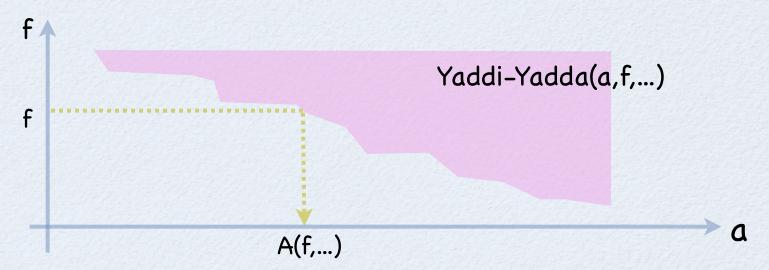
- F(a,...) is monotone w.r.t. a
- range of a is large (exponential)
- range of F(a,...) is small (polynomial)



Inversion Trick

Consider a function F(a,...) = min{f : Yaddi-Yadda(a,f,...)} s.t.

- F(a,...) is monotone w.r.t. a
- range of a is large (exponential)
- range of F(a,...) is small (polynomial)



Instead compute A(f,...) = min{a : Yaddi-Yadda(a,f,...)}

```
and then F(a,...) = min\{f : A(f,...) \ge a\}
(binary search ....)
```

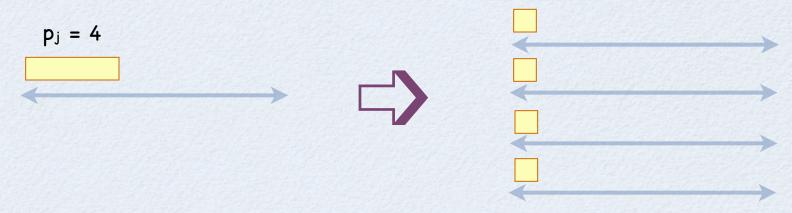
Inversion Trick (any p_j, gaps)

Example 1: Extending Algorithm B2L1P1 (minimizing # gaps, unit jobs) to arbitrary processing times

Inversion Trick (any p_j, gaps)

Example 1: Extending Algorithm B2L1P1 (minimizing # gaps, unit jobs) to arbitrary processing times

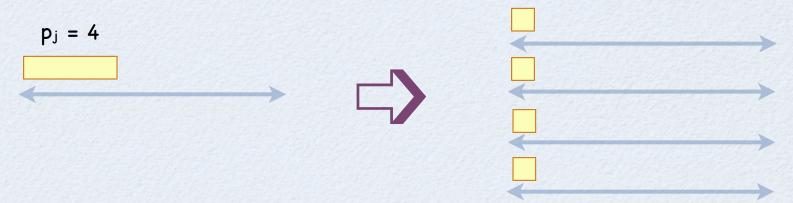
Obvious approach: break each job into unit jobs



Inversion Trick (any p_j, gaps)

Example 1: Extending Algorithm B2L1P1 (minimizing # gaps, unit jobs) to arbitrary processing times

Obvious approach: break each job into unit jobs

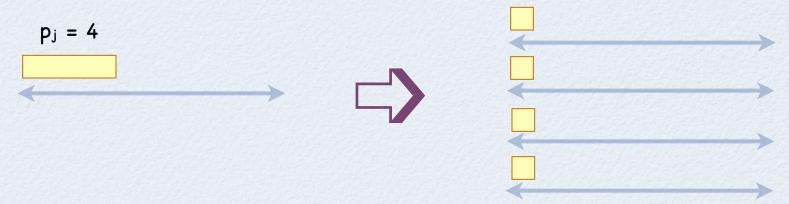


This leads to:

- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $G_{k,p}(u,v) = minimum \# gaps w.r.t. [u,v] for Inst_{k,p}(u,v)$

Example 1: Extending Algorithm B2L1P1 (minimizing # gaps, unit jobs) to arbitrary processing times

Obvious approach: break each job into unit jobs



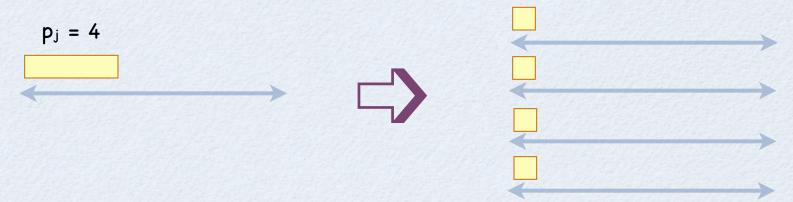
This leads to:

- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $G_{k,p}(u,v) = minimum \# gaps w.r.t. [u,v] for Inst_{k,p}(u,v)$

We can apply Algorithm 2 but ... range of p not polynomial

Example 1: Extending Algorithm B2L1P1 (minimizing # gaps, unit jobs) to arbitrary processing times

Obvious approach: break each job into unit jobs



This leads to:

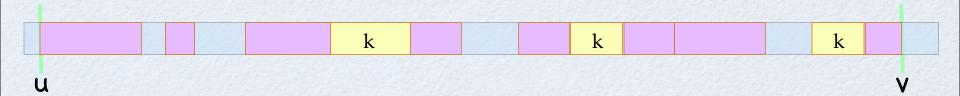
- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $G_{k,p}(u,v) = minimum \# gaps w.r.t. [u,v] for Inst_{k,p}(u,v)$

So we invert:

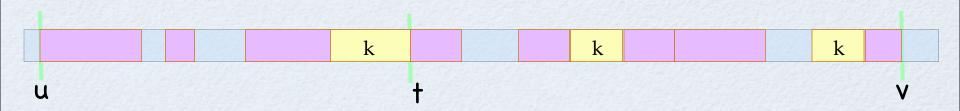
 $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps

- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps

- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps

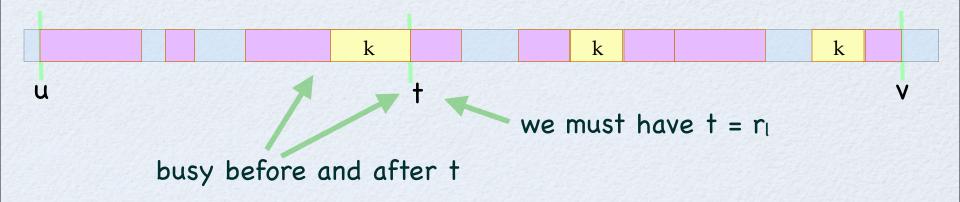


- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps

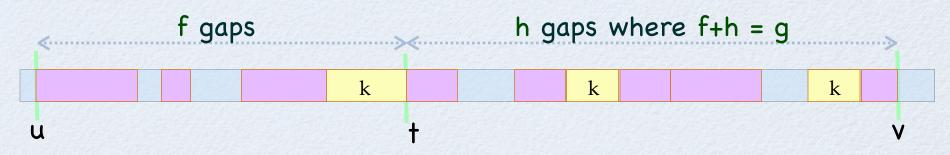


- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps

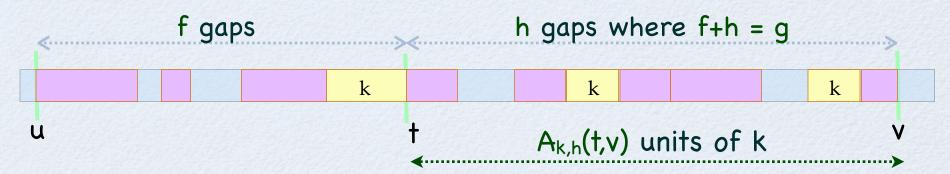
- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps



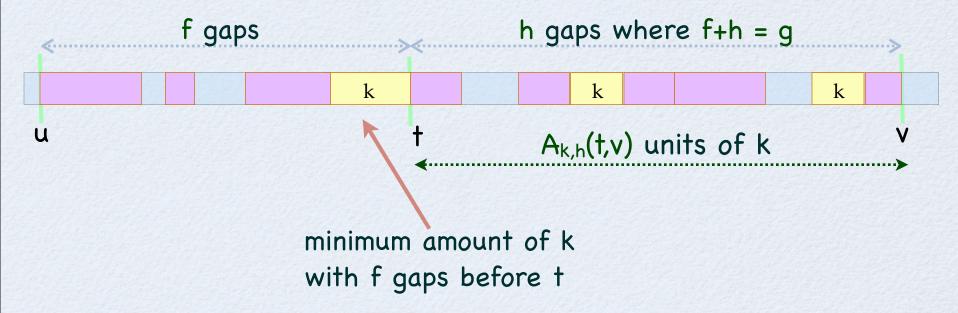
- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps



- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps

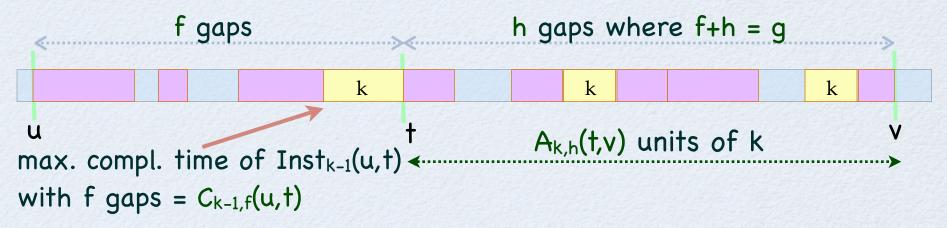


- Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$
- $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps



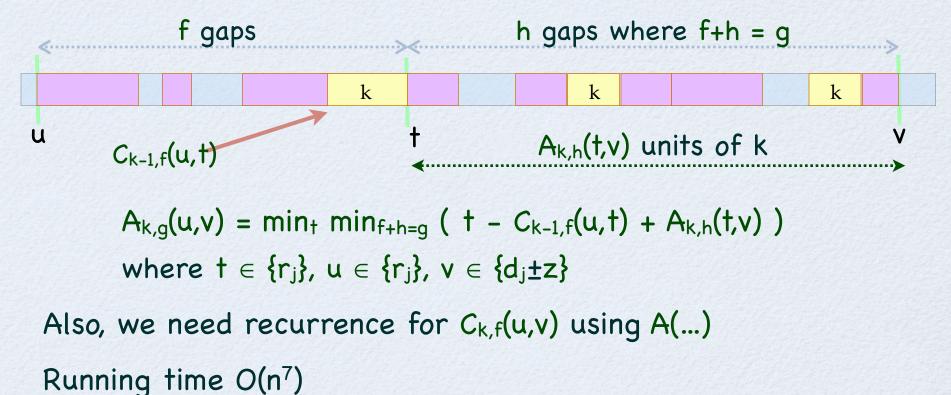
• Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$

• $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps



• Inst_{k,p}(u,v) = jobs 1,2,...,k with $r_j \in [u,v-1]$, and with $p_k \leftarrow p$

• $A_{k,g}(u,v) = minimum amount p of job k for which Inst_{k,p}(u,v) has a schedule with <math>\leq g$ gaps



Inversion Trick (unit jobs, gaps, but faster) Example 2: Speeding up the unit/gaps case to $O(n^4)$ $G_k(u,v) = \min_t \{ \# \text{ gaps : yaddi yadda } \}$ O(n) O(n) O(n) O(n) O(n) O(n)O(n) Inversion Trick (unit jobs, gaps, but faster) Example 2: Speeding up the unit/gaps case to $O(n^4)$ $G_k(u,v) = \min_t \{ \# \text{ gaps : yaddi yadda } \}$ O(n) O(n) O(n) O(n) O(n)O(n)

Invert: compute

 $V_k(u,g) = \max \{ v : Inst_k(u,v) \text{ has schedule with g gaps } \}$

Inversion Trick (unit jobs, gaps, but faster) Example 2: Speeding up the unit/gaps case to $O(n^4)$ $G_k(u,v) = \min_t \{ \# \text{ gaps : yaddi yadda } \}$ O(n) O(n) O(n) O(n) O(n)O(n)

Invert: compute

 $V_k(u,g) = \max \{ v : Inst_k(u,v) \text{ has schedule with g gaps } \}$ Gives $O(n^4)$ [BCD'08] Can be extended to any p_j 's in time $O(n^5)$ [BCD'08]

Minimum Energy Scheduling

Main techniques:

- * Philippe's partitioning trick \checkmark
- * Reducing the minimizer sets \checkmark
- * Inversion trick ("large" parameter ⇔ "small" value) √

* $O(n^2)$ -time reduction: Energy \leq Gaps

S = lex-minimal energy-optimal schedule[u,v) = short gap in S

Claim: wlog, if $r_j < v$ then j is executed before v

S = lex-minimal energy-optimal schedule[u,v) = short gap in S

Claim: wlog, if $r_j < v$ then j is executed before v

Proof: suppose not

S = lex-minimal energy-optimal schedule[u,v) = short gap in S

Claim: wlog, if $r_j < v$ then j is executed before v

Proof: suppose not

S = lex-minimal energy-optimal schedule[u,v) = short gap in S

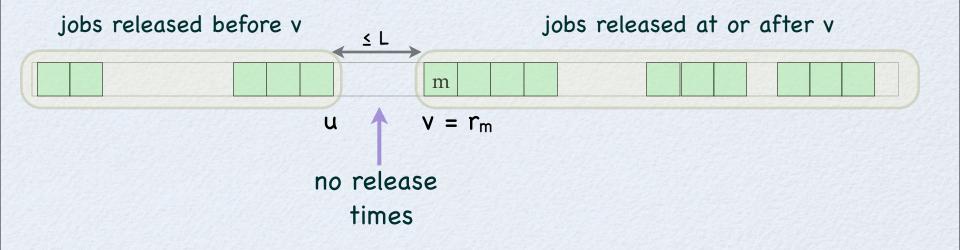
Claim: wlog, if $r_j < v$ then j is executed before v

Proof: suppose not

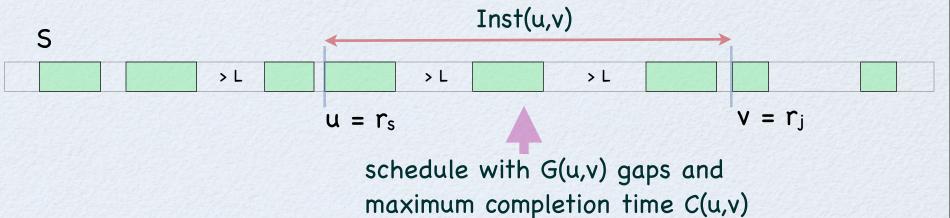
Then E(new S) \leq E(S) and new S is lex-smaller than S -- contradiction

S = lex-minimal energy optimal schedule[u,v) = short gap in S

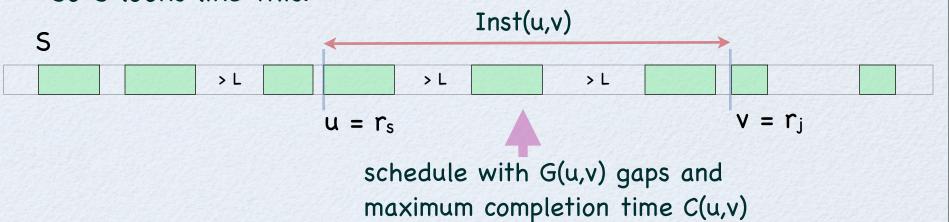
So S looks like this



S = lex-minimal energy-optimal schedule So S looks like this:

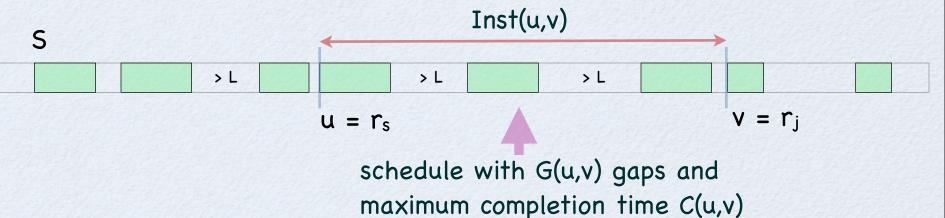


S = lex-minimal energy-optimal schedule So S looks like this:



Denote E_s = minimum energy schedule of jobs released \ge r_s

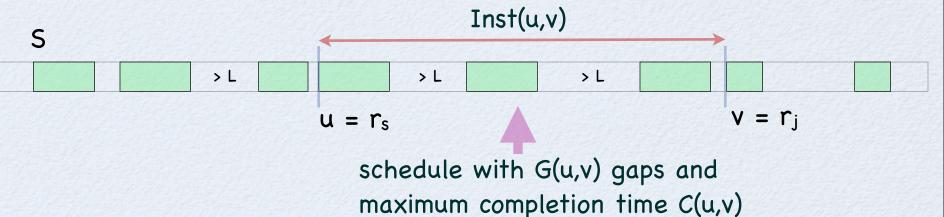
S = lex-minimal energy-optimal schedule So S looks like this:



Denote E_s = minimum energy schedule of jobs released \ge r_s

$$E_{s} = \min_{r_{j} > r_{s}} \{ L \cdot [G(r_{s}, r_{j}) - 1] + [r_{j} - C(r_{s}, r_{j})] + E_{j} \}$$

S = lex-minimal energy-optimal schedule So S looks like this:



Denote E_s = minimum energy schedule of jobs released \ge r_s

$$E_{s} = \min_{r_{j} > r_{s}} \{ L \cdot [G(r_{s}, r_{j}) - 1] + [r_{j} - C(r_{s}, r_{j})] + E_{j} \}$$

Running time: $O(n^2)$ + (time to compute all G(), C() values)

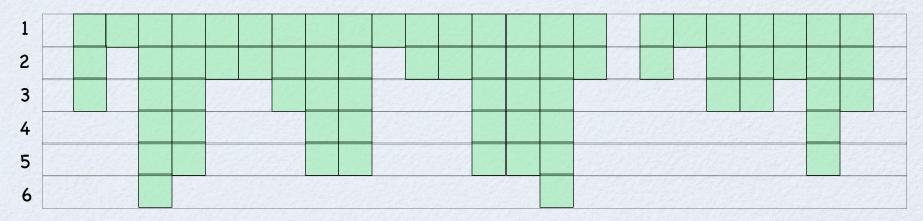
Minimum Energy Scheduling

Main techniques:

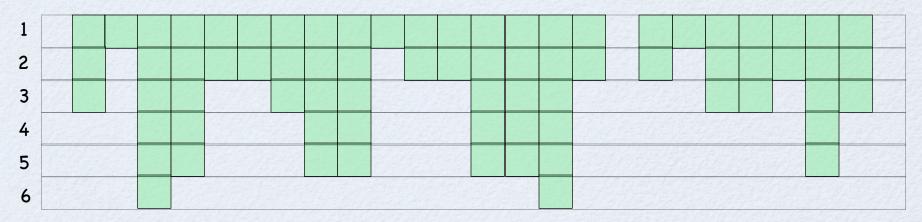
- * Philippe's partitioning trick \checkmark
- * Reducing the minimizer sets \checkmark
- * Inversion trick ("large" parameter ⇔ "small" value) √

* $O(n^2)$ -time reduction: Energy \leq Gaps \checkmark

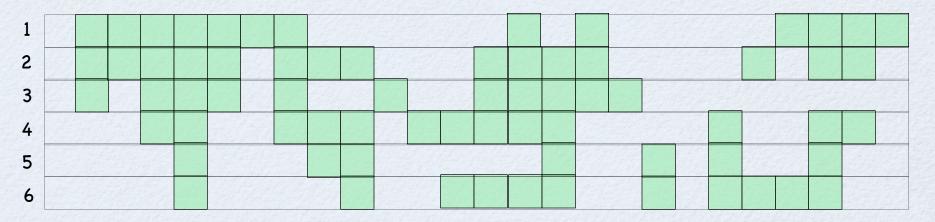
Minimum Energy Scheduling – Other Results

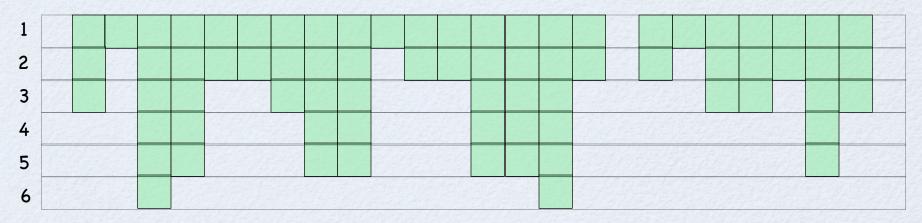


Claim: WLOG, optimal schedule is compact:

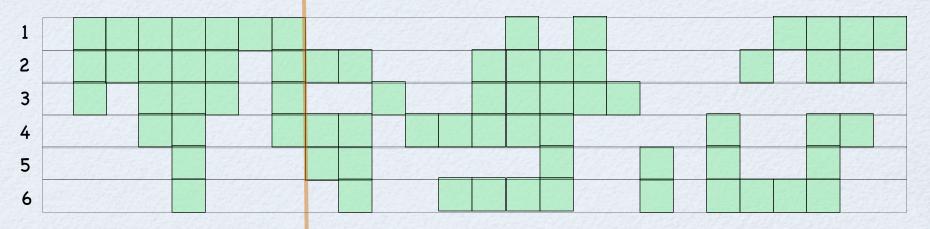


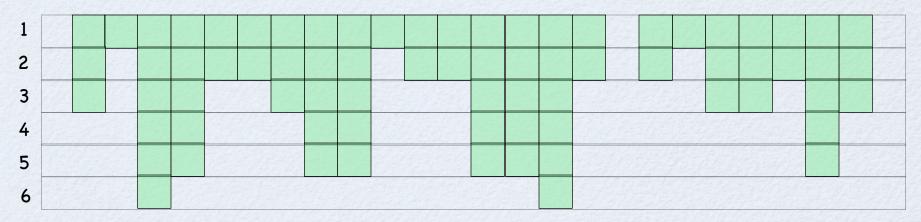
Proof: Suppose not:



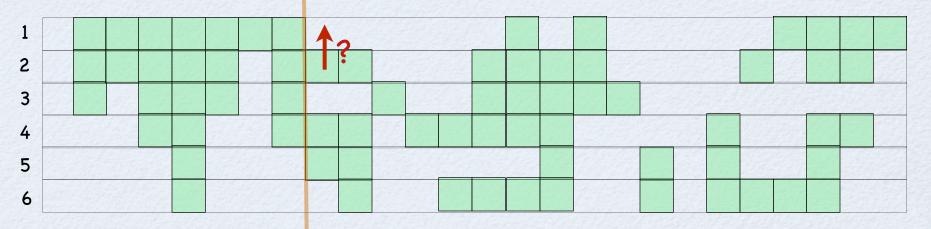


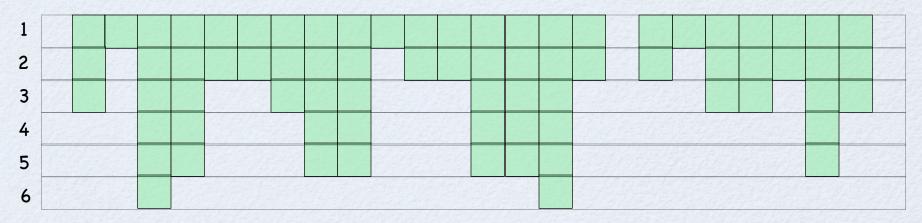
Proof: Suppose not:



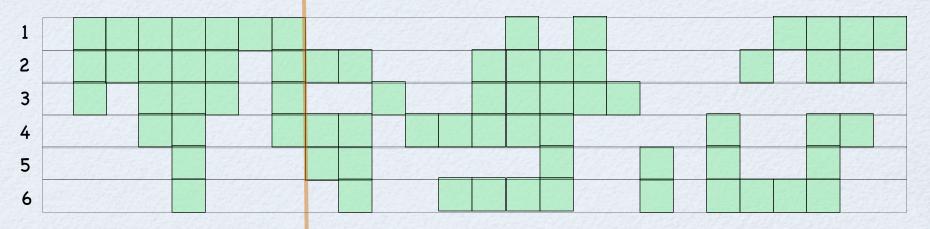


Proof: Suppose not:

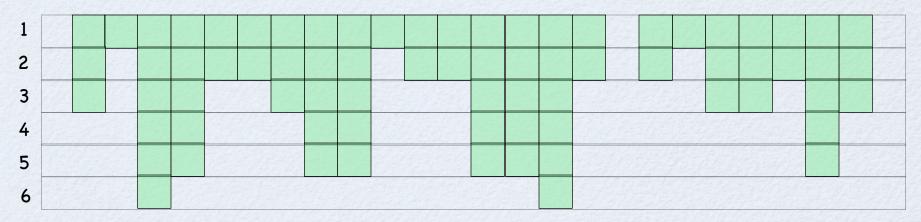




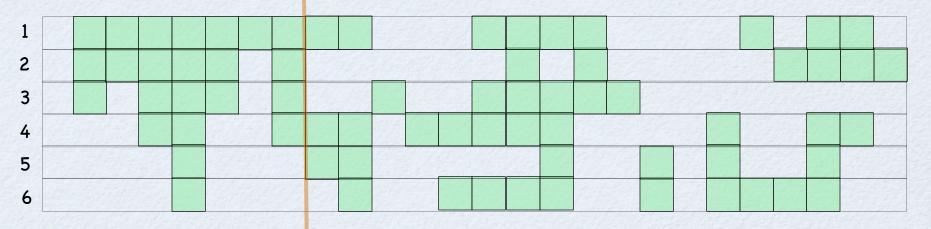
Proof: Suppose not:



Claim: WLOG, optimal schedule is compact:

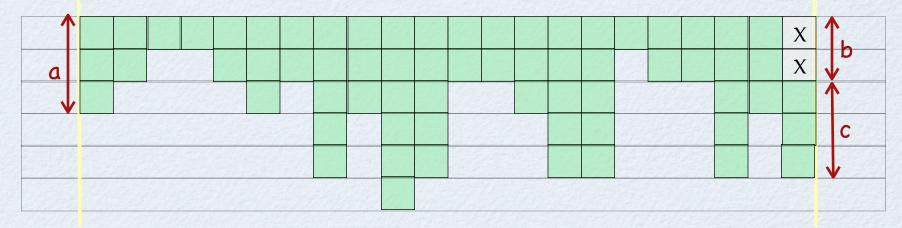


Proof: Suppose not:



switch cannot increase # gaps, so repeat till schedule is compact

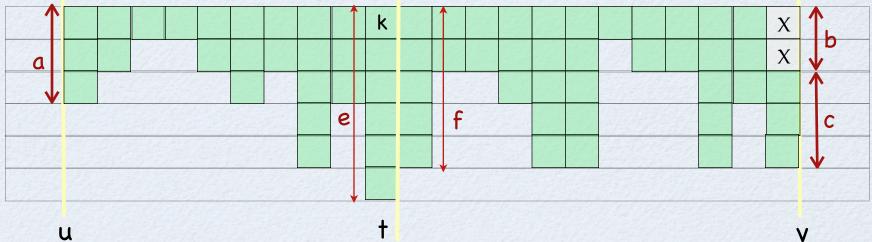
Generalize Philippe's partition trick: Sub-instance



V

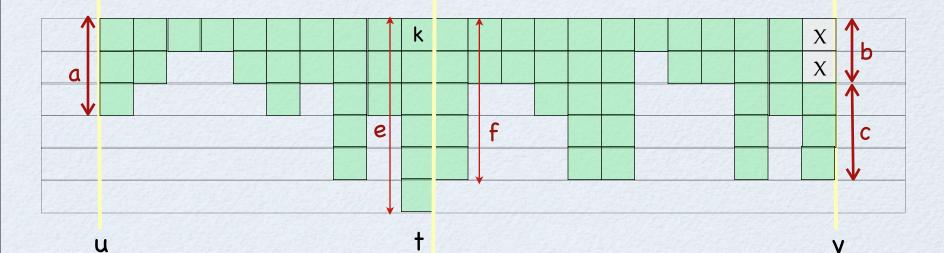
u

Generalize Philippe's partition trick: Sub-instance



u

Generalize Philippe's partition trick: Sub-instance



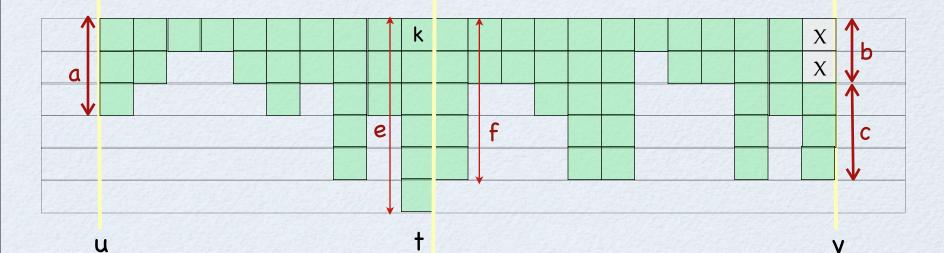
Recurrence:

 $G_k(u,a,b,v,c) = \min_{t} \min_{e,f} \{ G(...) + G(....) \}$

Running time $O(n^7m^5)$ [DG...'07]

m processors, unit jobs, gaps [DG...'07]

Generalize Philippe's partition trick: Sub-instance

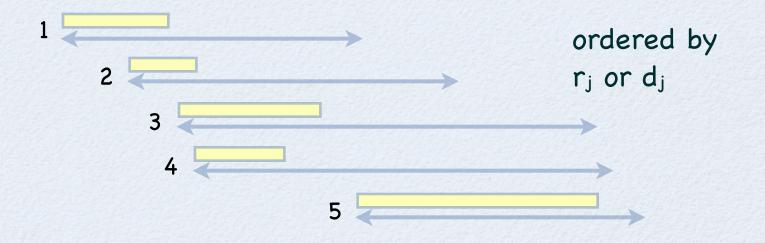


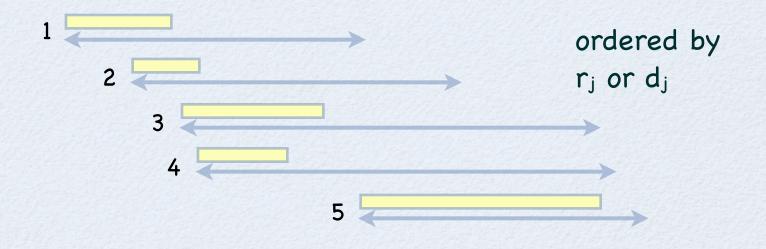
Recurrence:

$$G_k(u,a,b,v,c) = \min_t \min_{e,f} \{ G(...) + G(....) \}$$

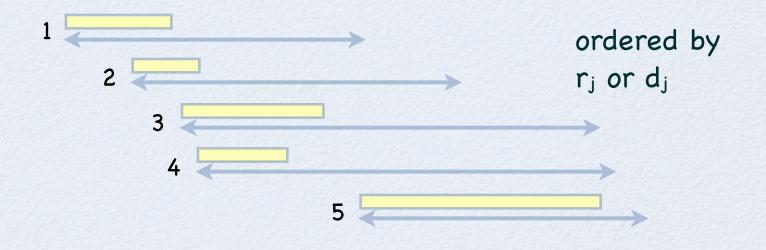
Running time $O(n^7m^5)$ [DG...'07]

Can be improved to $O(n^5m^5)$ using smaller maximizer sets

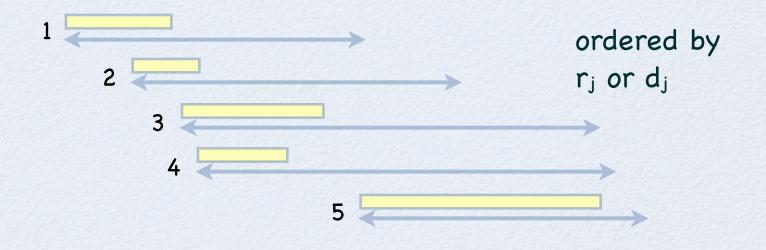


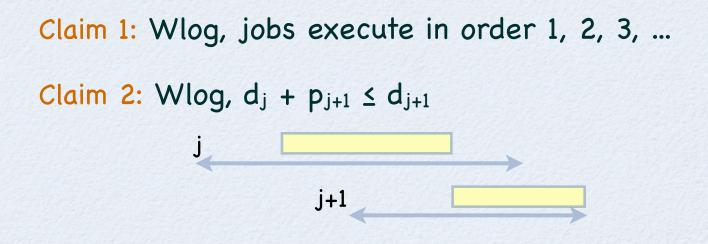


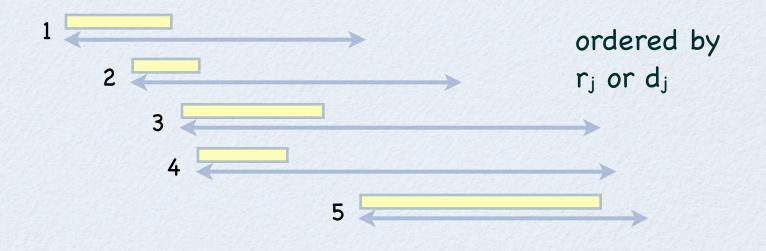
Claim 1: Wlog, jobs execute in order 1, 2, 3, ...



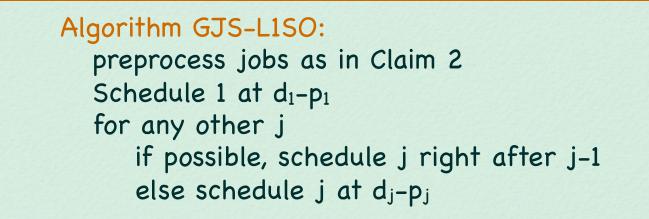
Claim 1: Wlog, jobs execute in order 1, 2, 3, ... Claim 2: Wlog, $d_j + p_{j+1} \le d_{j+1}$

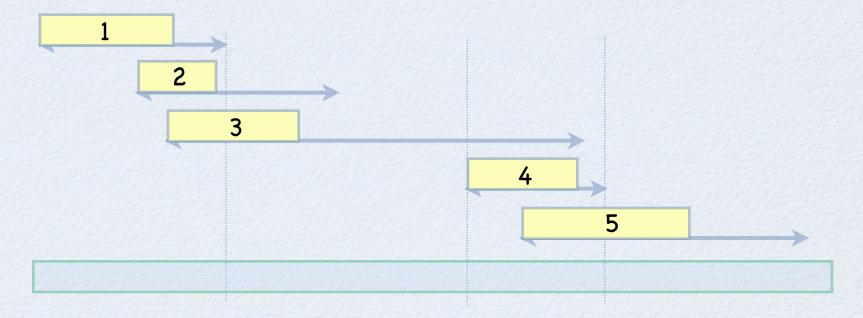


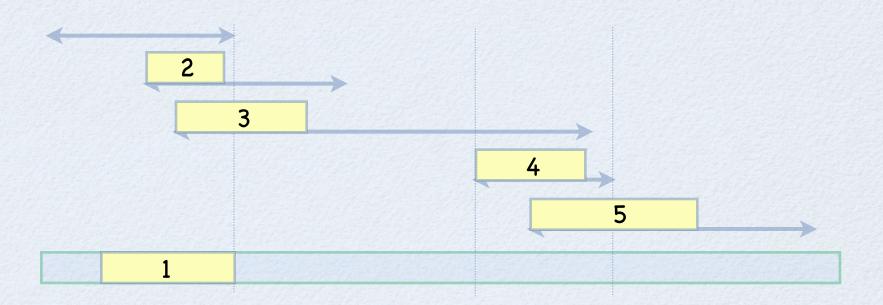


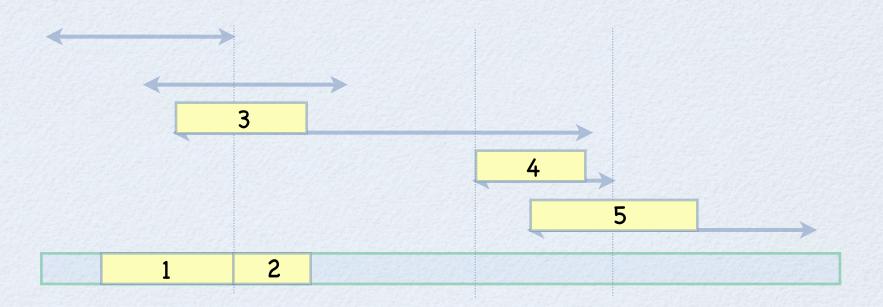


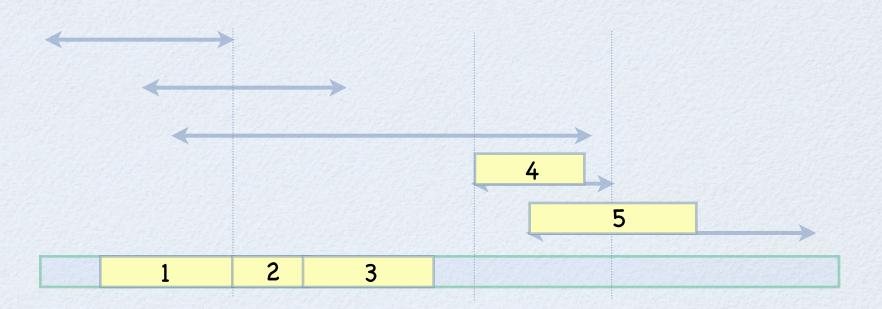
Claim 1: Wlog, jobs execute in order 1, 2, 3, ... Claim 2: Wlog, $d_j + p_{j+1} \le d_{j+1}$

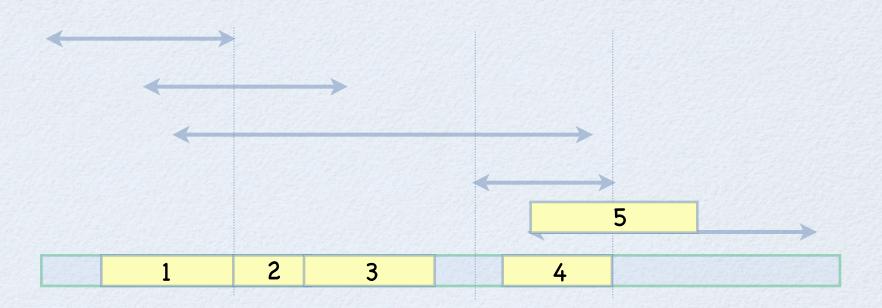


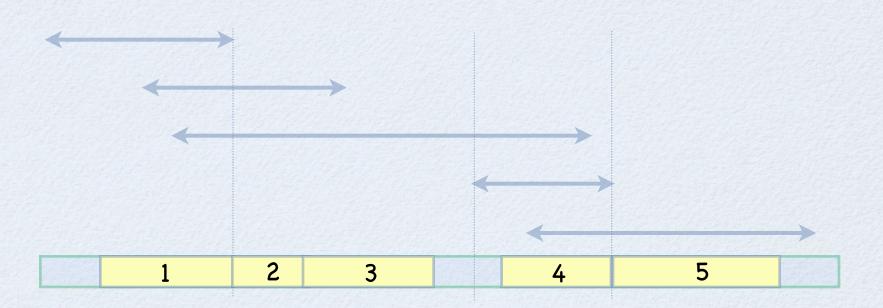


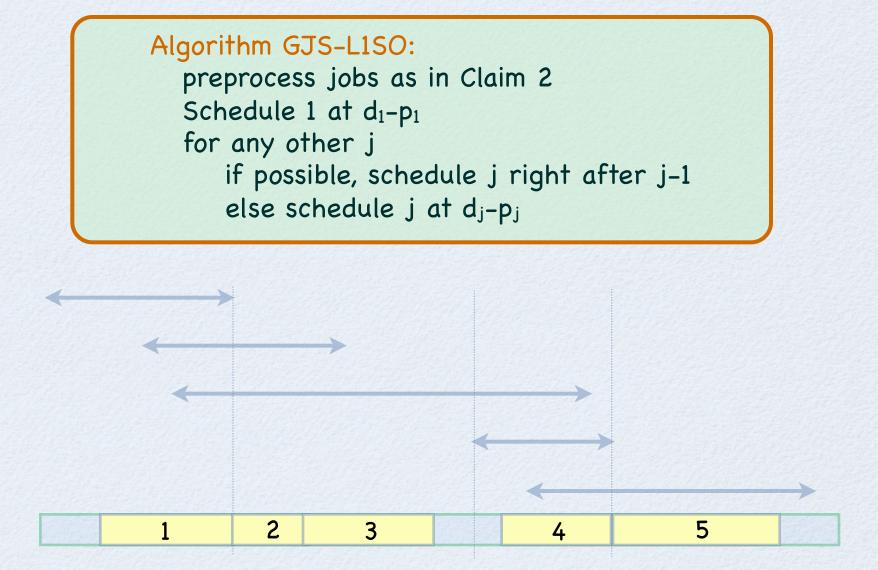












Running time: sorting + $O(n) = O(n \log n)$

 Back to sheep: if any group of ≤ g sheep dies, minimize # of dead sheep

- Back to sheep: if any group of ≤ g sheep dies, minimize # of dead sheep
- 2. Or maximize minimum group size

- Back to sheep: if any group of ≤ g sheep dies, minimize # of dead sheep
- 2. Or maximize minimum group size
- 3. Several power levels

- Back to sheep: if any group of ≤ g sheep dies, minimize # of dead sheep
- 2. Or maximize minimum group size
- 3. Several power levels
- 4. For multiprocessors: each processor can be turned off, or the whole system

- Back to sheep: if any group of ≤ g sheep dies, minimize # of dead sheep
- 2. Or maximize minimum group size
- 3. Several power levels
- 4. For multiprocessors: each processor can be turned off, or the whole system
- 5. Faster algorithms? Can the case (unit jobs, gaps) be solved in time O(n³)?

- Back to sheep: if any group of ≤ g sheep dies, minimize # of dead sheep
- 2. Or maximize minimum group size
- 3. Several power levels
- 4. For multiprocessors: each processor can be turned off, or the whole system
- 5. Faster algorithms? Can the case (unit jobs, gaps) be solved in time O(n³)?
- 6. Fast approximations: $1+\epsilon$ -approx. in $\tilde{O}(n)$ time?

- Back to sheep: if any group of ≤ g sheep dies, minimize # of dead sheep
- 2. Or maximize minimum group size
- 3. Several power levels
- 4. For multiprocessors: each processor can be turned off, or the whole system
- 5. Faster algorithms? Can the case (unit jobs, gaps) be solved in time O(n³)?
- 6. Fast approximations: $1+\epsilon$ -approx. in $\tilde{O}(n)$ time?
- 7. ...