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Worst Case Nash / Optimal Ratio 
 
What we learned from convex optimization: 
 
APPLICATION:   

- Let G = (V, E), with a continuous and monotonic delay function, de(x) ≥ 0, for 
each edge e ∈ E.   

- Let si, ti be source, sink pairs for i = 1, 2, …, k and Pi = {set of all paths from si to 
ti}. 

- Define flow fP ≥ 0 for P ∈ Ui Pi with the property that ∑P∈Pi  fP = 1. 
Now, the flow on edge e is f(e) = ∑P, e∈P  fP.  Also, delay on P is dP( f ) = ∑e∈P de( f(e)). 

 
The flow at Nash Equilibrium requires that ∀ P ∈ Pi, if fP > 0 and Q ∈ Pi, then  
 

dP( f )  ≤  dQ( f ).                  (A) 
 
(The logic behind this is that no user on a path P wants to switch to any other path.) 
 
THEOREM 7.1:  Suppose the goal is to minimize ∑e∈E ce( f(e)), where ce is convex and 

differentiable. (Note: the summation is separable.)  Then, the flow f is optimal if 
and only if ∀ P ∈ Pi, if fP > 0 and Q ∈ Pi, then 

 
∑e∈P ce’( f(e))  ≤  ∑e∈Q ce’( f(e)).                 (B) 

 
 (Note: here ce’ is the derivative of ce.) 
 
COROLLARY 7.1a:  Nash Equilibrium is the optimal flow and of course optimizes  

Ø(f ), where Ø(f ) = ∑e∈E 0∫ 
 f(e)

 de(x) dx.  This follows by substituting  



0∫ 
 f(e)

 de(x) dx  for ce( f(e)) in equation (B) and noting that the derivative of the 

integral, d/dx ( 0∫ 
 f(e)

 de(x) dx ) = de(f(e)).  The resulting equation is 
 

∑e∈P de( f(e))  ≤  ∑e∈Q de( f(e)), 
 
which is equivalent to dP(f )  ≤  dQ(f ).  Hence, by (A) our Nash Equilibrium flow 
satisfies the preconditions for Theorem 7.1. 
 

COROLLARY 7.1b:  The approximate Nash Equilibrium flow can be found in 
polynomial time. 
 

Let us consider a new objective function, ∑P∈Pi  fP ⋅ dP( fP)  =  ∑e∈E  f(e) ⋅ de( f(e)).  
Assume x ⋅ de(x) is convex for all edges (this is usually true for most de(x) functions). 
 
COROLLARY 7.1c:  If x ⋅ de(x) is convex for all e ∈ E, then the optimal flow, f, is 
obtained if and only if ∀ P ∈ Pi, if fP > 0 and Q ∈ Pi, then 
 

∑e∈P ( de( f(e)) + f(e) ⋅ de’( f(e)) )   ≤  ∑e∈Q ( de( f(e)) + f(e) ⋅ de’( f(e)) )          (C) 
 

COROLLARY 7.1d:  The approximate optimal flow (in an average happiness sense) can 
be computed if x ⋅ de(x) is convex. 

 
COROLLARY 7.1e:  For a new delay function de*(x) = de(x) + x ⋅ de’(x), the Nash 

Equilibrium flow is actually the optimal flow (in an average happiness sense) for 
the original routing problem.  Therefore, a network administrator’s strategy to 
achieve optimal flow could be to charge x ⋅ de’(x) as a tax/fee for using the 
network.    

** Charging money can make people behave Nashfully. ** 
 
GOAL:  Compare Nash flow with Optimal flow: 
 
Example 1: Nash:  All flow is on lower edge with delay 
  e2(1) = 1. 

: 
pper edge:  de1*(x) =  de1(x) + x ⋅ de1’(x) 

=  1 + x ⋅ 0 

ower edge: de2*(x) (x) + x ⋅ de2’(x) 
=  x + x ⋅ 1 

ptimal occurs when delays are equal  

d
 
Optimal
U
 
 =  1  
 
L =  de2

 
 =  2x 
 
O
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(de1*(x) = de2*(x)), so the flow will be split ½ 
 the top edge and ½ on the bottom edge. 

 
Example 2: Nash:  All flow is on lower edge with delay    

de2(r) = d, where r is the Nash flow rate. 

pper edge:  de1*(x)  =  de1(x) + x ⋅ de1’(x) 
 =  de2(r) + x ⋅ d/dx (de2(r)) 

ower edge:  de2*(x) 2(x) + x ⋅ de2’(x) 

– r* will be the flow on e1.  Then, r* can  

 
THEOREM 7.2 (Roughgarden):  The worst c s of 

delays, x ⋅ de(x) (convex and differentiable), is on a 2-edge, 2 node graph with one 

 
PROO E) as shown. 

on

 
Optimal:  
U
 
  =  d + x ⋅ 0 
  =  d 
 
L   =  de
 
If r* is the flow on e2 in the optimal case,  
r 
be computed by solving: 

    d = de2*(r*) = de2(r*) + r* ⋅ de2’(r*). 

ase of Nash / Optimal ratio for any clas

edge having a constant delay. 

F:  Consider the graph G = (V, 

 
 N

Let f  be the Nash flow on G.  Consider G’ = (V, E’) created from G by adding a parallel 
copy to every edge e ∈ E called e’.  Let e’ have fixed delay d (x) = d ( f

 N
(e)). 

1. f
 N

 is still a Nash flow for G’. 
The Optimal flow for G’ may have improved over the Optimal flow for the 

 the 
d e’ optimally as shown in Example 2. 

e’ e
 
Facts: 

2. 
original graph G. 

3. We claim that the Optimal flow on G’ is obtained from the Nash by dividing
flow between e an
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Proof o ing the flow f

 N
(e) 

between the two parallel copies.  Let de’(x) to denote the (constant) delay of e’, 

 

 
Therefore,  f* is the Nash flow  flow on the shortest  

i - ti paths).  This implies that f* is the Optimal flow for G’. 

f 3:  Assume f* is the flow constructed in Claim 3 by divid

the new parallel copy of edge e. We want to claim that f* is the optimal flow. 
Define the new delay function as de*(x) = de(x) + x ⋅ de’(x). By definition of how
we divide the flow between the two copies of an edge, e and e’, we have the 
following: 

de*( f*(e)) = de’*( f*(e)) = de(f
 N

(e)) 

 subject to the delay function de* (all
s
 
Continuing with the proof of Theorem 7.2: 
 
  Nash                 ≤     cost of f 

N
    =        ∑e∈E  f

 N
(e) ⋅ de( f

 N
(e))          . 

 Opt    (on G)           cost of f *             ∑e ∈E’  f*(e) ⋅ de( f*(e))     
 
≤   max                       f

 N
 (e) ⋅ de(f

 N
 (e))                               . 

       e          f*(e) ⋅ d ( f f* ⋅ d ( f*(e’)) 

 facts 1, 2, and 3 to G’. 
          The final inequality follows from the math theorem:    a + b  

e *(e))  + (e’) e’
 
Notes:  The first inequality follows from applying
    ≤  max (  a  ,  b  ). 

        a’    b’           a’ + b’          
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	Nash                 =     cost of f N    =        ?e(E  f N(e) ( de( f N(e))          .
	=   max                       f N (e) ( de(f N (e))                               .

