
CS 684: Algorithmic Game Theory Scribe: Jonathan Winter
Instructor: Éva Tardos Monday February 9, 2004

Worst Case Nash / Optimal Ratio

What we learned from convex optimization:

APPLICATION:

- Let G = (V, E), with a continuous and monotonic delay function, de(x) ≥ 0, for
each edge e ∈ E.

- Let si, ti be source, sink pairs for i = 1, 2, …, k and Pi = {set of all paths from si to
ti}.

- Define flow fP ≥ 0 for P ∈ Ui Pi with the property that ∑P∈Pi fP = 1.
Now, the flow on edge e is f(e) = ∑P, e∈P fP. Also, delay on P is dP(f) = ∑e∈P de(f(e)).

The flow at Nash Equilibrium requires that ∀ P ∈ Pi, if fP > 0 and Q ∈ Pi, then

dP(f) ≤ dQ(f). (A)

(The logic behind this is that no user on a path P wants to switch to any other path.)

THEOREM 7.1: Suppose the goal is to minimize ∑e∈E ce(f(e)), where ce is convex and

differentiable. (Note: the summation is separable.) Then, the flow f is optimal if
and only if ∀ P ∈ Pi, if fP > 0 and Q ∈ Pi, then

∑e∈P ce’(f(e)) ≤ ∑e∈Q ce’(f(e)). (B)

 (Note: here ce’ is the derivative of ce.)

COROLLARY 7.1a: Nash Equilibrium is the optimal flow and of course optimizes

Ø(f), where Ø(f) = ∑e∈E 0∫
 f(e)

 de(x) dx. This follows by substituting

0∫
 f(e)

 de(x) dx for ce(f(e)) in equation (B) and noting that the derivative of the

integral, d/dx (0∫
 f(e)

 de(x) dx) = de(f(e)). The resulting equation is

∑e∈P de(f(e)) ≤ ∑e∈Q de(f(e)),

which is equivalent to dP(f) ≤ dQ(f). Hence, by (A) our Nash Equilibrium flow
satisfies the preconditions for Theorem 7.1.

COROLLARY 7.1b: The approximate Nash Equilibrium flow can be found in
polynomial time.

Let us consider a new objective function, ∑P∈Pi fP ⋅ dP(fP) = ∑e∈E f(e) ⋅ de(f(e)).
Assume x ⋅ de(x) is convex for all edges (this is usually true for most de(x) functions).

COROLLARY 7.1c: If x ⋅ de(x) is convex for all e ∈ E, then the optimal flow, f, is
obtained if and only if ∀ P ∈ Pi, if fP > 0 and Q ∈ Pi, then

∑e∈P (de(f(e)) + f(e) ⋅ de’(f(e))) ≤ ∑e∈Q (de(f(e)) + f(e) ⋅ de’(f(e))) (C)

COROLLARY 7.1d: The approximate optimal flow (in an average happiness sense) can
be computed if x ⋅ de(x) is convex.

COROLLARY 7.1e: For a new delay function de*(x) = de(x) + x ⋅ de’(x), the Nash

Equilibrium flow is actually the optimal flow (in an average happiness sense) for
the original routing problem. Therefore, a network administrator’s strategy to
achieve optimal flow could be to charge x ⋅ de’(x) as a tax/fee for using the
network.

** Charging money can make people behave Nashfully. **

GOAL: Compare Nash flow with Optimal flow:

Example 1: Nash: All flow is on lower edge with delay
 e2(1) = 1.

:
pper edge: de1*(x) = de1(x) + x ⋅ de1’(x)

= 1 + x ⋅ 0

ower edge: de2*(x) (x) + x ⋅ de2’(x)
= x + x ⋅ 1

ptimal occurs when delays are equal

d

Optimal
U

 = 1

L = de2

 = 2x

O

 2

(de1*(x) = de2*(x)), so the flow will be split ½
 the top edge and ½ on the bottom edge.

Example 2: Nash: All flow is on lower edge with delay

de2(r) = d, where r is the Nash flow rate.

pper edge: de1*(x) = de1(x) + x ⋅ de1’(x)
 = de2(r) + x ⋅ d/dx (de2(r))

ower edge: de2*(x) 2(x) + x ⋅ de2’(x)

– r* will be the flow on e1. Then, r* can

THEOREM 7.2 (Roughgarden): The worst c s of

delays, x ⋅ de(x) (convex and differentiable), is on a 2-edge, 2 node graph with one

PROO E) as shown.

on

Optimal:
U

 = d + x ⋅ 0
 = d

L = de

If r* is the flow on e2 in the optimal case,
r
be computed by solving:

 d = de2*(r*) = de2(r*) + r* ⋅ de2’(r*).

ase of Nash / Optimal ratio for any clas

edge having a constant delay.

F: Consider the graph G = (V,

 N

Let f be the Nash flow on G. Consider G’ = (V, E’) created from G by adding a parallel
copy to every edge e ∈ E called e’. Let e’ have fixed delay d (x) = d (f

 N
(e)).

1. f
 N

 is still a Nash flow for G’.
The Optimal flow for G’ may have improved over the Optimal flow for the

 the
d e’ optimally as shown in Example 2.

e’ e

Facts:

2.
original graph G.

3. We claim that the Optimal flow on G’ is obtained from the Nash by dividing
flow between e an

 3

Proof o ing the flow f

 N
(e)

between the two parallel copies. Let de’(x) to denote the (constant) delay of e’,

Therefore, f* is the Nash flow flow on the shortest

i - ti paths). This implies that f* is the Optimal flow for G’.

f 3: Assume f* is the flow constructed in Claim 3 by divid

the new parallel copy of edge e. We want to claim that f* is the optimal flow.
Define the new delay function as de*(x) = de(x) + x ⋅ de’(x). By definition of how
we divide the flow between the two copies of an edge, e and e’, we have the
following:

de*(f*(e)) = de’*(f*(e)) = de(f
 N

(e))

 subject to the delay function de* (all
s

Continuing with the proof of Theorem 7.2:

 Nash ≤ cost of f

N
 = ∑e∈E f

 N
(e) ⋅ de(f

 N
(e)) .

 Opt (on G) cost of f * ∑e ∈E’ f*(e) ⋅ de(f*(e))

≤ max f

 N
 (e) ⋅ de(f

 N
 (e)) .

 e f*(e) ⋅ d (f f* ⋅ d (f*(e’))

 facts 1, 2, and 3 to G’.
 The final inequality follows from the math theorem: a + b

e *(e)) + (e’) e’

Notes: The first inequality follows from applying
 ≤ max (a , b).

 a’ b’ a’ + b’

 4

	Nash = cost of f N = ?e(E f N(e) (de(f N(e)) .
	= max f N (e) (de(f N (e)) .

