CS294-1 Algorithmic Aspects of Game Theory Spring 2001

Lecture 2: January 23

Lecturer: Christos Papadimitriou Scribes: Andrea Frome(afrome@cs), Kunal Talwar(kunal@cs)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

2.1 Overview

We begin by looking at a set of theorems from various disciplines and how they relate to one another. From
combinatorics, we take Sperner’s Lemma which we can use to prove Brouwer’s Fized Point Theorem from
topology. Brouwer’s Fixed Point Theorem can be used to prove the Arrow-Debreu Theorem from economics
which states that general equilibria exist, and can also be used to prove Kakutani’s Fized Point Theorem.
Kakutani’s Fixed Point Theorem can be used to prove that Nash Equilibria exist for all games. A graph
illustrating how these theorems can be used to prove each other is given in Figure 2.1.

2.2 Sperner’s Lemma

Here we consider an example application of Sperner’s Lemma to a simplex in two dimensions, though the
lemma can be generalized to higher dimensions. Take the following steps to set up the problem (see Figure
2.2):

1. Triangulate the simplex so that it’s divided into smaller triangles.
2. Number the corners of the simplex 0, 1, and 2.
3. Label each of the vertices in the triangulation with either 0, 1, or 2, subject to the following rules:

e a vertex on a side of the simplex cannot be assigned the same number as the corner of the simplex
opposite that side, and

e vertices inside the simplex can be labelled with any of the numbers.

Lemma 2.1. Sperner’s Lemma: If you label the vertices as described above, you will always have a small
triangle somewhere in the simplex with its vertices labelled (0,1,2). Moreover, you will have an odd number
of such triangles.

Proof. To prove Sperner’s Lemma, we trace a path through the simplex that is guaranteed to end in a (0, 1, 2)
triangle. In order to make the proof cleaner, we first add some “triangles” to the 0 — 1 side of the simplex
(see Figure 2.3). We begin outside the simplex and enter the simplex using the boundary 0 — 1 edge. Thus
we enter a triangle that has at least one 0 — 1 edge. At any point in the trace, if we are not in a (0, 1,2)
triangle, the triangle has exactly two 0 — 1 edges. We continue our trace by crossing the other 0 — 1 edge.
We cannot ever re-enter any triangle, since a triangle has at most two 0 — 1 edges. Also, we cannot exit the
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Figure 2.2: Example triangulated and labelled simplex

Figure 2.3: Example solution
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Figure 2.4: Labelling scheme

simplex because there is only one boundary 0 — 1 edge. Since the triangulation has finitely many triangles,
our trace must end at a traingle with exactly one 0 — 1 edge, which has to be a (0, 1,2) triangle! O

Using Sperner’s Lemma, we can now prove Brouwer’s Fixed Point Theorem.

2.3 Brouwer’s Fixed Point Theorem

Take an equilateral triangle—a two-dimensional simplex—and perform some transformation such that all
points on the modified triangle lie somewhere within the boundary of the original triangle. Some possible
transformations are rotating the triangle by some multiple of %, flipping the triangle along a bisector, or
shrinking the triangle. (This does not include translating the triangle because some of the translated points
would not lie within the boundary of the original.) After any such transformation ¢, Brouwer’s theorem says
that there is a point x that is in the same position as it was in the original simplex.

Theorem 2.2. Brouwer’s fixed point theorem (1915) :Let S be any n-dimensional simplex and let
¢S — S be any continuous function. Then ¢ has a fized point, i.e. Jx* € S such that ¢p(z*) = x*.

Proof. We prove the theorem here for the special case where the simplex S is an equilateral triangle in R2.
An essentially similar argument applies to the general case. The proof is a direct application of Sperner’s
lemma.

Let Ty, 11, ..., Ty, .. be a sequence of succesively finer triangulations (for example Diameter(T,,) < 27™).
We define labellings Lg, L1, ..., L,,... for the triangulations as follows.For a vertex z in the triangulation,
consider the vector from x to ¢(z). Extend this vector until it meets a boundary of the simplex. If it crosses

LConsider each triangle in the triangulation as a room in a castle, and a 0 — 1 edge as a door. Note that the castle has only
one entry/exit, and each room has at most two doors. What the argument above says is that if we enter the castle, and move
through the rooms, our path should end in a room with exactly one door.
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Pareto Point

Figure 2.5: Graph of two people’s utilities and one possible Pareto Point

edge AB (resp. BC, CA), we label X as 2 (resp. 0, 1). We break ties arbitrarily. It is easy to see that under
this labelling, for any ¢ : S — S

e the vertices 0, 1,2 of the triangle get labels 0, 1, 2 respectively.

e 1o vertex on the edge AB (resp. BC' and CA), gets a label 2 (resp. 0 and 1).

Thus L; is a legal Sperner labelling for trianglulation T;. Thus by Sperner’s lemma, there is a (0,1,2)
triangle, say ¢; in T;. Let m; be the centroid of triangle ¢;. Consider the sequence of points (m;). This is a
infinite sequence in S, and thus has a subsequence (z;) that converges to a point € S 2. Thus z is arbitrary
close to the centroid of some (0,1, 2) triangle.

We claim that x is a fixed point of ¢. This is so because if ¢(z) is different from x, we can find a small
(0,1,2) triangle containing = but not ¢(x). Since ¢ is continuous, this triangle cannot be labelled (0,1, 2).
For a more rigorous proof, the reader is referred to Appendix A. O

2.4 Arrow-Debreu Theorem (General Equilibria Exist)

To frame the problem, consider a marketplace with n agents a k different commodities. Each agent i comes
to the market place with an endowment which we represent as a vector of goods or services: e; € Rﬁ. Every
agent ¢ has a utility function w; : Ri — Ry which describes how much utility agent i gets from various
amounts of the k goods. The utility function may be arbitrary, and it is not necessarily linear. Also we
assume that the goods are infinitely divisible.

When agents come to the market, they want to exchange goods with other agents such that they improve
their overall utility. There is a point in this exchange known as the Pareto Point where neither agent can
improve their utility through further exchanges (see Figure 2.5).

The question is: How should exchanges be carried out to maximize the agents’ utilities and at what prices?
It’s possible that the necessary sequence of exchanges is complicated or creates a cycle, and searching for an
optimal exchange sequence is computationally intractible. Instead we could have everyone announce their

2This is a consequence of the Bolzano Wierstrass Theorem, e.g see Royden [RA98], page 153.
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utility functions and try to solve for an optimum, but then we have no way of knowing whether people are
being honest about their utilities.

A solution is to use set prices for each commodity p; € R™, which for now we will assume are “God-given”.
With prices in hand, there is no longer a dilemma; each agent buys a vector of goods X; that maximizes
u;(X;) subject to

Pp-Xi<p-e (2.1)

where p - Xj is the amount the agent pays for the goods she wants and p - e; is the amount the agent received
for her original endowment. This can be solved for X;(p), the optimal purchase of goods for agent ¢ when
prices are p. (We assume that X;(p) is continuous and has a unique optimum.)

At some point the market may clear, meaning that all the goods for sale have been purchased. The total
amounts of each commodity demanded by all agents is described by X(p) = Z?:l X;(p), and the market
clears if

X(p) <E (2.2)
where E = E?:l e; is the total amount of goods brought to the market.

Theorem 2.3. Arrow-Debreu Theorem (1954): There is always a price p* such that X(p*) <E, i.e
one can always find a price that clears the market. Such a price is a general equilibrium. This price is also
a Pareto Point.

(Note: While the price equilibrium is unique, there may be several Pareto Points, depending upon the agents’
initial endowments.)

Surprisingly, finding p* can be done with remarkably little communication. Consider the simplex of all prices
d.p=1
J

If the price is such that there is excess demand, then the price should be increased by the amount that
demand exceeds the endowment (assuming no inflation, we can normalize all prices such that they add up
to one):

B(p) = < . B max(0,(X; — B > (2.3)

" normalization constant’

Either the endowment is greater than or equal to what the agents want in which case the price stays the
same, or the price is increased by the difference between what the agents want and the total endowment.
This transformation maps a vector of prices to another point in the simplex, and Brouwer’s Fixed Point
Theorem says that there must always be a fixed point to such a tranformation. Call the fixed point p*.

Claim 2.4. At fized point p*, for every product j, Xj < Ej.

Proof. Let d = X — E. Let d; = maz(0,d;). We want to show that d; = 0 for all commodities j.
We have from 2.3,

®(p) = -(p+d) (2.4)

ol
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for some normalization constant & > 1.

Moreover, adding equations 2.1 for all agents i, we get
p-X<p E (2.5)

i.e.

p-d<0 (2.6)
Since p* is a fixed point, ®(p*) = p*. Taking dot product of equation 2.4 with d, we get,

p d=(p"+d) d

> =

Rearranging, and noting that d’-d = d’ - d, we get

|d|IP=d -d=(k-1)p-d<0

Thus d’ must be zero. O

2.5 Nash Equilibria Exist

The proof of Nash’s theorem requires the use of another fixed point theorem more general than the Brouwer’s
fixed point theorem.

Theorem 2.5. Kakutani’s fixed point theorem Let ® : S — 2° be any convez valued function such that
for any sequence {(x;,y;)) converging to (x,y), if Vi € N:y; € ®(z;), then y € ®(x) (this property is called
graph continuity ). Then ® has a fized point, i.e. Jx* € S such that x* € O(x*).

Proof. We give here a proof sketch for the 2-d simplex case. As in the proof of Brouwer’s theorem, we
consider a sequence of succesively finer triangulations Ty, 1Y, ...,Ty,.... For a triangulation T;, we define a
function ¢; as follows. For a vertex x of the triangulation, ¢;(x) is set to some y € ®(x), chosen arbitrarily.
For any other point € S, ¢;(z) is defined by linear interpolation in the triangle containing x. Thus ¢; is
a continuous map. By Brouwer’s fixed point theorem, ¢; has a fixed point z}. Now consider the sequence
(xF). Tt has a convergent subsequence, that converges to some point z* € S. Using the graph continuity of
®, it can be shown that z* € ®(z*). O

For a more rigorous proof of Kakutani’s fixed point theorem, the reader is referred to [KA41].

For any game, a Nash equilibrium suggests that none of the players has an advantage in changing his strategy,
without the other players changing their strategy as well. More formally,

Definition 2.6. Let S1 and So be the set of possible strategies for player 1 and 2 respectievely. Let pq :
S1 X Sa — R (resp. p2) be the payoff function for player 1 (resp. player 2). Then a tuple (s1,s2) is said to
be in Nash equilibrium if

pl(s/lv 52)

p2(817 8/2)

Vst €81 pi(si,s2)
VS/2 S SQ : pQ(Sl, 82)

AVANIY]
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While the above definition captures all pure strategies, it does not consider the possibility of mized strategies,
i.e. strategies where a player chooses a move s € S randomly according to some distribution II on S. When
we allow mixed strategies, we assume that each player tries to maximize his expected payoff. Thus if player
i chooses from a distribution II; on S;, each player tries to maximize

P, o) = " Thi(s1)Ma(s2)pi(s1, 52)

81€S51,82€852

A tuple of mixed strategies is said to be in mixed Nash equilibrium if

V prob.distributions ITj on Sy :  py (111, I13)
V prob.distributions IT, on Sy 1 po(IIy, Ilo)

pl(Hllv]:[Q)

>
> po(I1y, I15)

While for many games, it is the case that no pure Nash equilibria exist, mixed Nash equilibria always exist.

Theorem 2.7. Nash’s theorem: Every game has a mixed strategy Nash equilibrium.

To prove Nash’s theorem, let ®;(II3) be the set of all mixed strategies I} € D(S7) that maximize p; (I}, II3)
for a mixed strategy Il € D(Sz2) of player 2. Similarly define the set ®5(II;). Now let

<I>(H1,H2) = <I>1(1'[2) X <I>2(1'[1)

It is easy to see that ® : D(S;) x D(Sy) — 2PEVXP(S2) a5 defined above is convex valued and graph
continuous. Hence by Kakutani’s fixed point theorem, ® has a fixed point (II3, II3). This, by definition is a
mixed Nash equilibrium.

2.6 Overview of Course Topics
A brief overview of the topics for the semester:

1. Background on equilibrium theorems.

2. Notions of Equilibria.
Nash equilibria always exist, but often there are too many of them. Much of game theory has been a
critique of Nash equilibria.

3. Games played by automata.

To explain people’s strategies in Prisoner’s Dilemma, we need a more refined theory. Perhaps repetition
and reputation are the the key. If we consider resource bounds, then automata become relevant to
game theory; people don’t have infinite reasoning capacity and we can model them using automata
with limited states.

4. Evolutionary Game Theory
Discuss John Maynard Smith. Talk about game theory in the context of evolution, finding an evolu-
tionarily stable strategy, e.g. “tit for tat”.

5. Mechanism Design

Inverse game theory. Given desired outcomes, design a game so that agents acting rationally will
behave in a desired way. An example is the Vickero auction where the highest bidder is the winner,
but the winner pays the amount of the second highest bid.
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6. Fairness.
7. Auctions, including combinatorial auctions.

8. Price of Anarchy

Take a network where it is possible to control what route each packet takes to its destination. If a
central authority were to determine an optimal routing policy given all the information in the network,
the improvement in performance would be at most twice over a system where each agent optimizes its
own packets.
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Appendix

A Details in proof of Brouwer’s theorem

Theorem 2.8. Consider the labelling defined in theroem 2.2. Let x be the limit of a sequence (x;) of centroid
of a sequence of (0,1,2) triangles with diameter converging to 0. Then x is a fixed point of ¢.

Proof. Assume the contrary, i.e. ¢(x) # x. Then t = ||¢(z) — x| > 0. Let € = t/2F for some k. Since ¢ is
continuous and e > 0, there exists § > 0 such that Yy € N(z,9) : #(y) € N(é(x),€).

Let ¢ = £ min(e, d). Since z; converges to x, 3N; € N such that Vn > Ny : @, € N(z,€). Further, since
the diameter of the triangulations converges to zero, ANs € N such that Vn > Ns : diameter(T,,) < €. Thus
for n > max(Ny, N3), a (0,1,2) triangle ¢, lies wholly inside N(x,2¢) C N(x,0). Thus by the continuity
condition above, each of the three vertices a, b, ¢ of the (0,1,2) triangle maps to some point in N(¢(x),¢€),
outside the triangle. Since the triangle is a (0,1, 2) triangle, the vectors ¢(a) — a, ¢(b) — b, ¢(c) — ¢ span an
angle of at least /3 (by our labelling scheme). However, for k large enough, the angle spanned can be made
arbitrarily small (see figure 2.6 (b)), which is a contradiction. Hence the claim. O



Lecture 2: January 23

(a) (b)

Figure 2.6: (a) Proof details (b) Angle spanned by vectors should be small
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