PlexC: A Policy Language for Exposure Control

Yann Le Gall and Adam J. Lee
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA, USA

{ylegall, adamlee}@cs.pitt.edu

ABSTRACT

With the widespread use of online social networks and mo-
bile devices, it is not uncommon for people to continuously
broadcast contextual information such as their current loca-
tion or activity. These technologies present both new oppor-
tunities for social engagement and new risks to privacy, and
traditional static ‘write once’ disclosure policies are not well
suited for controlling aggregate exposure risks in the current
technological landscape.

Therefore, we present PlexC', a new policy language de-
signed for exposure control. We take advantage of several
recent user studies to identify a set of language requirements
and features, providing the expressive power to accommo-
date information sharing in dynamic environments. In our
evaluation we show that PlexC can concisely express com-
mon policy idioms drawn from survey responses, in addition
to more complex information sharing scenarios.

Categories and Subject Descriptors

H.4.0 Information Systems Applications]: General

Keywords

Privacy, Exposure, Policy Languages

1. INTRODUCTION

The popularity of online social networks has contributed
to an unprecedented amount of personal information shar-
ing. Moreover, the widespread use of mobile devices encour-
ages the broadcast of contextual information from any loca-
tion. For example, smart phone users can send their current
location to social networks such as Facebook Places [25],
Google+ [14], and Foursquare [13]. Furthermore, technolo-
gies such as CenceMe [19] can infer the current activity (e.g.,
running or dancing) from a smart phone’s onboard sensors.
With so many ways to share personal contextual informa-
tion, the task of protecting individual privacy is becoming
more challenging. One important challenge is to maintain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’12, June 20-22, 2012, Newark, New Jersey, USA.

Copyright 2012 ACM 978-1-4503-1295-0/12/06 ...$10.00.

Apu Kapadia

School of Informatics and Computing

Indiana University Bloomington
Bloomington, IN, USA

kapadia@indiana.edu

the utility of information sharing without sacrificing per-
sonal privacy. To achieve this equilibrium individuals need
to do more than simply define a static disclosure policy once
and for all. They must be able to specify flexible and adap-
tive policies that can manage the disclosure of personal in-
formation in the face of both typical and atypical access
patterns. We refer to such policies as exposure-aware.

Motivation. Over the years, a large body of research lit-
erature has explored a variety of access control mechanisms
and their policy language encodings. Existing policy lan-
guages have incorporated powerful features to group princi-
pals into functional roles [16,17,27], delegate authorization
decisions across security domains [2,4], and even manage
state changes during policy evaluation [3,21]. However, few
sharing systems or policy languages have drawn upon large
user studies to inform their design. As a consequence, the re-
sulting languages and systems offer a variety of interesting
features, yet may not provide users with the functionality
needed to address their real-world exposure concerns. By
contrast, we carefully consider findings from several recent
user studies within the exposure space [5,24,28] and lever-
age a variety of findings from these studies to provide insight
into exposure perception and control.

For example, Schlegel et al. highlighted the importance of
exposure feedback through an intuitive interface [28]. Addi-
tionally, Patil et al. discovered that certain factors, like the
frequency with which location requests occur, are more im-
portant to users than other common factors, like the current
time of the location request [24]. This is quite interesting, as
few existing systems allow for controlling the frequency of re-
quests, while several [18,26,30] provide policy constructs for
controlling disclosures based upon the day of week or time
of day. Another important outcome of this study was the
identification of several common concerns and policy idioms
that are not typically associated with social engagement pur-
poses, such as only sharing location during emergencies or
with law enforcement personnel.

Our Contributions. Findings from these recent user
studies reveal several ways to address shortcomings in cur-
rent information sharing systems and their respective pol-
icy languages. To summarize a few, location sharing sys-
tems and their disclosure policy languages must be flexible
enough to support users with diverse privacy concerns [5].
Furthermore, it is important to provide unobtrusive, ambi-
ent feedback about how users’ data are being shared with-
out necessarily revealing the identity of the requester [28].
Finally, policies should provide the ability to manage disclo-

sure based on more than just common factors, such as the
identity of the requester, but more complex policies may
not be easily expressed [24]. To address these concerns we
propose a new policy language PlexC whose functionality is
based in large part on the needs voiced by the human sub-
jects who participated in these studies. In doing so we make
the following contributions:

1. We survey the recent research literature for human sub-
jects’ data regarding contextual information sharing and
exposure control. Based on these findings we develop
policy language and system requirements necessary for
servicing the exposure control needs of users;

2. We develop a general system model for contextual infor-
mation sharing systems that represents the features of
existing logically centralized systems and is capable of
modeling more user-centric systems that may appear;

3. We design a novel policy language, PlexC, that addresses
the limitations identified in recent user studies and spec-
ify its syntax and semantics. We further discuss the query
resolution procedure used by PlezC;

4. To evaluate the utility of PlexC we demonstrate that it
is both capable of expressing a range of common policy
idioms and can encode interesting real-world information
sharing constraints specified by the subjects of several
survey studies.

Paper outline. We start by defining the exposure problem
and by identifying a set of language requirements that are
motivated by recent user studies in §2. Next we discuss
related work in §3. The syntax of PlexC is described in §4.
In §5 we evaluate the expressivity of our policy language
against real user policies, interpret the findings, and discuss
future work in §6. Finally, we conclude in §7.

2. BACKGROUND AND REQUIREMENTS

In this section, we first define the concept of exposure and
introduce the relevant research challenges. Next we high-
light the results of several recent user studies that explore
aspects of the exposure-control problem space. We conclude
this section by enumerating a set of exposure-control policy
language features the need for which is highlighted by these
studies and other works in the research literature.

2.1 The exposure problem

Before describing our system model and how it addresses
the exposure problem, we first explain what we mean by
“exposure”. Intuitively, a user’s ideal policy for controlling
access to their personal data is a moving target that is, at
best, approximated by the policies and controls that the
user puts in place to protect their information. To para-
phrase an example by Schlegel et al. [28], a user may initially
set a policy allowing her co-workers to access her location
during normal work hours to facilitate in-person meetings.
However, if she later finds that her boss is accessing her lo-
cation every 5 minutes to ensure that she remains in-office,
she may become uncomfortable. This disconnect between
the employee’s model of permissible sharing and the level
of sharing allowed by the protections that she put in place
leave her more exposed to external queries and analysis than
she had anticipated.

Potential
over-exposure

Over-exposure

Acceptable exposure

Figure 1: The exposure control problem.

The problem of exposure control is non-trivial, as expo-
sure can be viewed as a function over a multi-dimensional
space expressing a human sentiment. Some of these inputs
may be unknown a priori as many contextual factors may in-
fluence a user’s perception of exposure. For example, some-
one’s notion of exposure may be influenced by the time of
day, their current location, whom they are with, how many
requests they have received, and so on. We propose that
trying to control such a complex and dynamic property re-
quires an adaptive process in which disclosure policies are
continuously specified, enforced, and revised.

A semi-formal view of the exposure problem is captured
in Figure 1. In this depiction U represents the universe
of all access traces to a user’s personal data. These traces
describe sequences of queries to a user’s data, which may
be dependent on system and user context (location, activ-
ity, etc.), as well as other past queries. P* represents the
user’s ideal model of data sharing—which is unlikely to be
captured correctly due to the complexities of managing the
myriad contextual facets of the exposure control problem—
while P represents the access traces permitted by the user’s
deployed policies. E represents the access traces that have
actually been made to the user’s data and represents the
user’s exposure. ENP* represents the user’s acceptable expo-
sure, whereas EN P\ P* represents the user’s over-exposure.
P\ P*\ E represents the user’s potential over-exposure.

The complexities of properly capturing P* lead us to en-
vision an exposure control loop in which a policy is specified
and deployed, and feedback on the allowed access traces is
periodically provided to the user. This exposure feedback
can then be used by the user to revise their policy over
time, resulting in a sequence of policies allowing trace sets
Pi, Ps, ..., P, that aims to minimize potential over exposure
and avoid further over-exposure. In the following sections
we describe the design of the PlexC' system and how it ac-
commodates and encourages the exposure control loop.

2.2 Recent Studies

Our work is grounded in a series of recent user studies
relating to exposure control. Here we describe each study
in more detail and explain how their findings are relevant to
exposure control. The results of these studies contribute to
many of the requirements discussed in Section 2.3.

When Privacy and Utility are in Harmony: Towards

Better Design of Presence Technologies. In this
study, Biehl et al. explored user sentiment about presence
data collection and sharing with an emphasis on workplace
settings [5]. Another goal was to explore the utility of receiv-
ing various types of presence information. They conducted a
survey of 32 participants representing a wide range of ages,
professions, and geographic regions across the US.

This study is relevant to exposure control because it mea-
sured how comfortable participants felt as a function of
many variables, including the type of data collected (e.g.,
location, activity), the recipient of the data (e.g., boss,
coworker, friend), the setting in which the data collection
occurred (e.g., office, work event, home), and the format,
owner, and location of the data collected. Also, the authors
measured how comfort levels changed based on perceived
utility for the recipient.

One important finding of this study was that comfort lev-
els across different sensing technologies were bimodal. In
other words there is no one-size-fits-all privacy policy that
addressed all users’ privacy needs. Thus, information shar-
ing systems must be flexible. Another finding was the strong
correlation between how comfortable users were with shar-
ing information by granularity and their perceived utility of
receiving information from others at that granularity.

Eyeing Your Exposure: Quantifying and Control-
ling Information Sharing for Improved Privacy. In
this study, Schlegel et al. address the problem of location
exposure feedback and control in a game-based simulated
lab study [28]. They develop and compare two different
smart-phone interfaces: (i) a so-called “detailed informa-
tion interface” that shows the number of requests in the last
hour from different categories of people (e.g., friends, fam-
ily, strangers), and (ii) a so-called “eyes interface” that shows
the user a number of cartoon eyes on the main screen of the
app in which each eye represents location requests from a
single person, and the size of the eye grows depending on
the number of requests and the social relationship.

This study is relevant because it quantifies the role of fre-
quency in exposure control and embraces the notion that
informative feedback is an important part of controlling ex-
posure. However, with too much detail feedback interferes
with querier anonymity. Likewise, if feedback is too frequent
or obtrusive, then it may annoy the user. The findings of
this study suggest that it is possible to benefit from feedback
without sacrificing querier anonymity or usability.

My Privacy Policy: Exploring End-User Specifica-
tion of Free-Form Location Access Rules. In this
online study Patil et al. asked over a hundred participants
to write location-sharing policy rules using everyday En-
glish [24]. In addition participants were asked to rate and
rank the importance of a number of factors that might influ-
ence location sharing, such as the identity of the recipient,
the current location, the frequency of requests, and the like.

The research questions addressed in this work are also very
pertinent to the domain of exposure control. The notion of
exposure varies across individuals and across many other
dimensions. This study measured the preferences of a large
sample of individuals and allowed them to freely identify
factors that contribute to over-exposure. Furthermore, the
ratings and rankings suggest which factors might require
more attention than others.

There were a number of interesting findings. Unexpect-

edly, participants indicated that the ‘time of day’ and the
‘day of the week’ of location requests were less important
than the ‘frequency of receiving requests’. Furthermore,
in general people had difficulty expressing coherent policies
that controlled for all of the factors that they rated as being
important. Finally, the authors identified several common
themes in the free-form policies. Some of these include com-
plete manual mediation of requests, temporary blocking, and
sharing only for emergencies.

2.3 Language Requirements

Here we describe a series of language features that are im-
portant for the efficient and accurate expression of exposure
control policies. These requirements are motivated by past
work as well as the recent user studies previously described.

Disclosure Negotiation. In open distributed systems
it is impossible to specify the trust relationship between all
pairs of individuals a priori. Negotiation allows strangers
to build trust by exchanging credentials, information, etc.
Negotiation has been identified as an important feature and
used in several policy languages [4,12,29]. Negotiation is also
important for understanding the reasons for which a request
was made, and individuals are more likely to feel comfortable
sharing their location if they believe it will be useful to the
requester [5]. An example of this type of policy idiom is
given below: Share my city-level location with anonymous
requesters, but if the requester is willing to reveal his identity
then also share my street-level location.

Polymorphism. Here we use polymorphism to describe a
policy whose requirements change based on the user’s degree
of over-exposure. Schlegel et al. explore ways of estimating
and representing this metric [28]. The following policy illus-
trates the utility of exposure polymorphism: Share my ez-
act location with family only when my current over-exposure
level is low; Otherwise if my over-exposure is high, only share
my city-level location.

Side Effects. Side effects appear in policy rules and spec-
ify transactions that modify the authorization state of the
system when the rule is satisfied. Side effects are appropriate
in large dynamic systems where maintaining ACLs is inef-
ficient [21]. Furthermore, role-based policy languages typi-
cally require updates to the authorization state as users ac-
tivate roles. However, most modern authorization languages
do not explicitly provide constructs to express state changes,
so management of state changes must be hard-coded into
system resource guards [3]. An example of a policy that
would be more easily expressed with side-effects might be:
The first 8 location requests from an individual require my
explicit approval, but subsequent requests do not.

Aggregate Operations. Aggregate operators can provide
users with summary information about the set of accesses to
their personal information (the region labeled “E” in Figure
1). This often includes operations such as SUM, COUNT,
or MAX, over sets and multisets of tuples [20]. Frequency-
based policies rely on the ability to aggregate records in the
audit log, and Patil et al. showed that individuals believe
that the frequency of requests is an important factor to con-
sider [24]. Furthermore, it is demonstrated by Dell’Armi
et al. that aggregate operators can increase the modeling
power of disjunctive logic programming languages and pro-
vide concise knowledge representation [11]. A typical use

of this feature would be the use of aggregation to limit the
frequency of location disclosures, e.g.: Do not share my lo-
cation more than 10 times per day.

Querier Privacy. “Querier privacy” often refers to anony-
mous access of resources, but, in general, it is not limited to
protecting the identity of the requester. Querier privacy has
been identified as an important feature in large online so-
cial networks (OSNs), especially those that have been used
to organize protests and share sensitive documents [1]. In-
terestingly, Tsai et al. showed that users of the location-
sharing technology Locyoution felt more comfortable sharing
their location when they were given feedback about who re-
quested their location. The ability to provide users with ex-
posure feedback might seem to be incompatible with querier
anonymity, but Schlegel et al. demonstrated intuitive feed-
back interfaces that accomplish this [28].

Delegation. Delegation allows disclosure decisions to be
passed on to a trusted authority. The utility of this feature
is apparent in the following policy rule: Share my loca-
tion with the same people with whom my friends share their
location. Delegation is an important feature of many autho-
rization languages [2,4,10,12,16,17]. In large decentralized
systems preexisting trust relationships often do not exist be-
tween authorizer and requester. Thus, delegation allows the
authorizer to make decisions based on trusted third parties.
Delegation also simplifies policies in hierarchical systems.

Groups and Roles. In role-based access control (RBAC),
subjects are assigned to one or more roles (or groups), and
permissions are assigned based on their roles, e.g.: Family
members can always see my exact location, but colleagues
can view my location only during work hours. RBAC greatly
simplifies permissions management, is well suited for large
organizations in the commercial and government sectors [27],
and is supported in most modern policy languages [5, 24].

Time and Location-based Rules. Time-based rules
control disclosure based on the current time. Similarly,
location-based rules control disclosure based on the current
location of the policy owner or the requester. As an example
of a location-based rule, the owner might define a number
of ‘named regions’ as a coordinate pair and a radius, and
associate regions with a sharing policy: Share my location
with family only if I am at the hospital.

Time intervals and named regions are natural ways to
specify policies that accommodate daily schedules and rou-
tines, and previous work has demonstrated that users of
OSN'’s are comfortable expressing policies using these fea-
tures [30]. Furthermore the current time and location of an
individual influence the type of information that she is will-
ing to share [5], e.g.: Share my location only between 9am
and 5pm. As previously shown, policy rules that are based
on the frequency of requests can also be implemented by
combining features that allow access to the current time and
audit log. Patil et al. observed that frequency-based rules
may have a greater importance than time-based rules [24].

Disclosure Levels. In a policy language that supports
multiple disclosure levels, the policy owner can specify the
degree of information to disclose. For example, in response
to a location request, the policy owner might choose to dis-
close only the name of the current city. This feature would
accommodate many of the challenges identified by Biehl et
al. [5]. They found people were more comfortable sharing

detailed location information at work and less detailed in-
formation outside of work. Therefore, comfort with different
disclosure levels is highly influenced by current location.

3. RELATED WORK

The body of literature describing access control policy lan-
guages and policy idioms is extensive. Researchers have de-
veloped role-based abstractions [17,31] to simplify the man-
agement of user rights, trust management approaches [6,7]
that combine the management of policies and trust rela-
tionships, and distributed logic-based approaches [4,12] that
can concisely and compactly manage very complex policies.
While some of these approaches have a logical syntax and
semantics, others are based on XML [31] or object-oriented
paradigms [10]. In this section we survey several recent and
feature-rich policy schemes and illustrate that none of these
schemes supports the full set of features outlined in Sec-
tion 2.3 (Table 1 summarizes the features of these schemes).

Li et al. introduced the RT framework, which consists of
a family of related languages for specifying distributed au-
thorization policies [17]: RT is a role-based trust manage-
ment language in which policies are constructed using four
simple rule types that assign users to roles, represent dele-
gations, and structure roles into hierarchical relationships;
RT; extends this basic framework with support for param-
eterized roles; RTT provides syntax for specifying policies
that require thresholding and separation of duty; and RT”
introduces constructs for constrained delegation. RT has
both a set-based semantics and a Datalog-based semantics,
and policies can be efficiently evaluated via translation into
a Datalog program.

Park and Sandhu introduced UCONapc, a family of
models for usage control (UCON) [22,23]. UCON is a
conceptual framework that provides a comprehensive ap-
proach to managing access control, Digital Rights Manage-
ment (DRM), and trust management. It can express a wide
variety of policies by applying different combinations of au-
thorizations, obligations, and conditions to digital objects.
For example, basic RBAC can be expressed using autho-
rization rules alone, whereas DRM can be expressed using a
combination of authorization rules, conditions, and obliga-
tions. UCON also explores the complexities that arise when
data consumers become data producers, if, for example, a
client’s personal information is logged during transactions.

Damianou et al. introduced Ponder, an access control lan-
guage for a variety of applications such as firewalls, operat-
ing systems, and databases [10]. In addition to traditional
features such as roles and delegation, Ponder supports poli-
cies that require actions to be taken after being triggered
by a certain event. Unlike many other authorization lan-
guages, Ponder is described as a declarative, strongly typed,
object-oriented language.

DeTreville presents Binder, a security language for dis-
tributed systems, which is based on Datalog [12]. However,
unlike basic Datalog, Binder programs can securely commu-
nicate with other Binder programs across distributed envi-
ronments using signed certificates.

Becker et al. developed Cassandra, which is built upon
Datalog with constraints (Datalogc [4]). Cassandra pro-
vides role-based trust management in distributed domains
with credential retrieval, separation of duty, and role activa-
tion/deactivation. Additionally, Cassandra rules may con-
tain a constraint ¢ drawn from a constraint domain C' that

negotiation exposure side effects | aggregation | tunable querier roles & time | location | tunable disclosure
polymorphism privacy delegation | rules | rules” granularity

RT no no no no no yes no no yes
Cassandra yes no no yes no yes yes no yes
SecPal no no no yes no yes yes no yes
SMP no yes yes no no yes no no no
Ponder no no yes no no yes yes no yes
Binder no no no no no yes no no yes
UCON yes no yes no no roles yes yes no
PlexC yes yes yes yes yes yes yes yes yes

Table 1: Comparison of language features.
*While other languages were not designed with location sharing in mind, they may be able to support location via minor extensions.

can be tuned to provide different tradeoffs between com-
putational complexity and expressivity. Becker et al. then
build upon the extensibility of Cassandra in SecPal [2]. Sec-
Pal has a high-level natural syntax and its design features
include delegation, constraints, and negation in queries. Sec-
Pal policies can also be compiled into Datalogc programs.

The State Modifying Policies framework [3] can be used
to extend policy languages based on distributed logics
with concepts from Transactional Datalog [8]. This pro-
vides support for the use of policies that are capable of
adding/retracting facts to/from the policy’s logic program
at runtime. This is useful, e.g., for supporting policies that
can augment and examine their own audit logs.

Recently, Gunter et al. described an idiom called
“Experience-Based Access Control” (EBAM) [15]. Briefly,
EBAM is a set of models, tools, and techniques to reconcile
the differences between ideal policies and the operational
policies enforced by the underlying system. A typical ap-
proach for realizing EBAM may include maintaining and
analyzing an access log to suggest ways to update and im-
prove existing rules. This iterative process is similar to the
exposure feedback loop discussed previously; however, PlexC
focuses on the human perception of exposure.

Collectively, these policy languages introduce an impres-
sive assortment of paradigms, idioms, and features for ex-
pressing security policies in different contexts. However, no
single policy language provides support for all of the features
identified in Section 2.3 as being important to the manage-
ment of end-user exposure (see Table 1). This is not surpris-
ing, as exposure management was not a primary goal during
the development of this prior work. In the next section we
describe Plex(C, a policy language for exposure control that
was designed not only to meet all of the needs identified
in Section 2.3, but also to take into account the findings of
recent user studies in the domain of exposure control.

4. PLEXC: SYSTEM AND SYNTAX

We now describe the system model assumed by PlezC in-
cluding its components, interfaces, and assumptions. We
then develop the PlezC exposure control language, which is
based on transactional extensions to Datalog.

4.1 System Model

PlezxC is a system that acts as a protection layer around a
set of resources. It has four main components: an external
query interface, an evaluation engine, a set of local knowl-
edge bases, and a component that manages sending feedback
to the user. This high-level structure is shown in Figure 2.

In a typical workflow, an application requests access to
some resource, say, Alice’s location. This request goes

8 requests
-

\ 4
application interface

@
3 | | evaluation engine || @
2 3
Z =3
3 @ remote
—]
5 = systems
=4 KB e
By &
o]
feedback @
policy editor

A

8 policies

Figure 2: The general PlezC system model.

through the external query interface, which limits and con-
trols ways in which external applications can interact with
the system. The query is then processed by a policy eval-
uation engine, which determines if the requester should be
granted access to the resource. This decision might be based
on information from several sources. In addition to evaluat-
ing disclosure policies, the evaluation engine may examine
audit logs and the authorization state stored in local knowl-
edge bases, and it may even request information from remote
PlexC systems. Finally, the disclosure decision is written to
the system audit log, and the feedback component may de-
cide to notify Alice about this interaction.

Communication between knowledge bases. When the
resource engine evaluates Alice’s disclosure policies, commu-
nication with other system components may be necessary.
For example, Alice may choose to reveal her location only
if very few requests have been made in the past hour. This
policy rule would require that the evaluation engine com-
municate with the local database, which maintains a log of
transactions. Furthermore, Alice’s disclosure policies might
depend upon Bob’s policies. For instance, Alice might only
reveal her location to members of a volunteer group orga-
nized by Bob. Consequently, the policy engine would com-
municate with Bob’s knowledge base to verify that the re-
quester is a member of the appropriate group. In order to
enable this type of behavior, knowledge bases can commu-
nicate with each other via an exported interface that allows
users to reference each other’s disclosure rules.

Storage of disclosure policies. Users store their expo-
sure control policies in a knowledge base composed of facts
and rules. Notice that the system model shown in Figure 2
caters to the principles of the exposure control loop by ex-
plicitly providing a path by which feedback information can
flow from the system to the policy owner. Furthermore, this
general system design lays the groundwork to support a rich
set of features that are important for controlling exposure.
We discuss these features in the next section.

4.2 Datalog Overview

Datalog is a logic programming language for deductive
databases. Because of its well-defined declarative seman-
tics and efficient query evaluation algorithms, it provides a
nice environment within which to express authorization poli-
cies. Indeed, many policy languages—including PlexC—are
based on Datalog or can be translated into Datalog pro-
grams (e.g., [2-4,12,17]). We now provide a brief review of
the terminology, syntax, and semantics of Datalog.

Datalog is a syntactic subset of Prolog, and programs are
composed of facts and rules. A rule is a statement of the
form q :— p1,p2,...,Pn, Where ¢ and each p; for 1 <i < n
are literals. Intuitively, this rule can be read as “p; and p2
and ... and p, imply ¢”. q is referred to as the head of the
rule, and the body is composed of each p;. A fact is a rule
that contains only a head and no body.

A literal has the form P(z1,x2, ..., Tm) where P is a pred-
icate name followed by a tuple with arity m, and each x; for
1 < i< mis a variable or constant.

Consider the following example that demonstrates a sim-
ple Datalog program:

parent(’alice’,’bob’).

parent (’carol’,’alice’).

ancestor(?7X,7Y) :- parent(?7X,7Y).

ancestor(?X,?Z) :- ancestor(?X,?Y),ancestor(?Y,?Z).
?-ancestor(?X, ’bob’).

Here we denote variables as strings prefaced by a ques-
tion mark, “?”, and string literals are surrounded by quotes.
In this example, the first two statements are ground facts.
These are sometimes stored in a physically separate database
called the Extensional Database or EDB. The next two state-
ments are rules, which are stored in the Intensional Database
or IDB. The EDB and IDB contain disjoint sets of predi-
cates; as such, predicates defined in the EDB may only ap-
pear in the body of rules, and may not appear in the head of
any rule. The last statement above is a query that seeks to
find all bindings of ?X such that ?X is an ancestor of ’bob’.
In the above program, the tuples ancestor(’alice’, ’bob’)
and ancestor(’carol’,’bob’) satisfy this query.

4.3 PlexC

We now describe the set of extensions distinguishing PlexC
from pure Datalog. First, we discuss the interface across
which external applications communicate with our system.
We then explain how transactional updates to the system
state can be expressed and how policy authors can both
create rules that are based on changes in the system audit
log and rules that are sensitive to user feedback. Finally, we
list additional built-in predicates and functions.

External Interface. External applications, such as
location- or presence-sharing applications, communicate

with the PlexC system to determine if a certain resource
of a user should be disclosed to the requester. This com-
munication occurs through an external interface exposed to
these types of applications that is composed of a set of pred-
icates described below:

System defined:.

e get(7Q,7U,7R,7L) :- U.canAccess(?Q,7R,7L) ®
+log(?Q,7U,7R,7L,NOW); get() is a system predicate
that is invoked when user @ requests resource R at
granularity L belonging to user U. Successful evaluation
of this predicate inserts a record into the audit log.

e over-exposure(?U,?E) binds the current exposure of user
U to the free variable E. The current exposure could be
estimated by a user-defined function that runs over the
audit log. For example, a user’s exposure might be HIGH if
the audit log shows a large number of accesses in the past
hour.

User defined:.

e canAccess(?Q,?R [, 7L]) is true if the requester, @, can
access the desired resource, R, at the (optional) level of
granularity, L.

e isMember (?U,7R) is true if user U is currently a member
of role R.

e canQuery(?U,7P) is true if the policy author allows an-
other user U to reference predicate P in her policy rules.

By creating a set of policy rules, the policy author is free to
define the conditions satisfying the predicates in the exter-
nal interface. However, the system is responsible for defining
the get predicate, which retrieves the user’s personal infor-
mation, such as the current location or activity.

When personal information is disclosed via the get pred-
icate, a transaction occurs in which a record of the access
is inserted into the system audit log. The record contains
information about the requester, the resource disclosed, the
time of disclosure, and the level of detail (granularity) of the
disclosure. Prior research has explored incorporating trans-
actions into Datalog. Transaction Datalog (TD) is an exten-
sion to Datalog for executing transactions that modify the
database as rules are evaluated. TD supports the classical
ACID properties as well as other properties like transaction
hierarchies, concurrency, and cooperation [§].

PlexC also supports the notion of state effects as intro-
duced by Becker and Nanz [3]. Effects can be composed
by the sequential transaction operator “®” from Transac-
tional Datalog [8]. This feature allows users to express poli-
cies that require role activation, separation of duty, or other
state-dependent operations. For example, the following rule
allows requesters to access an individual’s location only once:

Example 4.1
canAccess (7X,LOCATION) :- not seen(?X,LOCATION)
® +seen(?X,LOCATION) ;

Here, the sequential transaction operator, ®, is used to
specify the facts to be inserted to or deleted from the
database (denoted by a “+” or “—” respectively), if all con-
ditions in the body are satisfied.

Built-in Constants. PlexC also includes a number of
constants that refer to resources that the user is not respon-
sible for defining;:

e NOW refers to the current time;
e TODAY is a string representing the current date;

e MYLOC represents the current location of the user, stored
as a point (coordinate pair), and a radius;

e LOCATION is a constant used to identify location resources;

e CITY is a constant used to specify the city-level of granu-
larity for location resources;

® ANYONE is a placeholder that matches any user when scan-
ning the audit log;

e TRUE represents the positive truth value;

e FALSE represents the negative truth value.

User Policies. Users can define facts and rules to control
disclosure. As with basic Datalog this allows the easy cre-
ation of groups and roles. Example 4.2 demonstrates a set
of basic facts and rules that a user might create.

Example 4.2

canAccess(’bob’, LOCATION);
canAccess(?X, LOCATION) :- isMember(?X,
’friend’);

The first statement is a fact that explicitly gives Bob access
to Alice’s location information. In the next statement, Alice
also allows her friends to view her location. Thus we see
that with basic Datalog syntax we can easily implement a
simple, static role-based access control model.

Remote predicates. Users can also specify remote pred-
icates by providing an identifier as a prefix before the pred-
icate name. With this feature we can encode policies that
require delegation. In the following example, Alice delegates
disclosure decisions to Bob:

Example 4.3
canAccess(?X, LOCATION) :- bob.canAccess(?X,
LOCATION) ;

Similarly, with these features we can express basic forms
of disclosure negotiation and other rules that are quid pro
quo. In the following example, Alice only allows another
user to access her location if she can access his location:

Example 4.4

canAccess(?X, LOCATION) :- 7X.canAccess(’alice’,
LOCATION) ;

canAccess(?X, LOCATION, CITY) :-
?X.canAccess(’alice’, LOCATION, CITY);

Additionally, PlexC allows policy authors to constrain
the information in the knowledge base that is visible to
other users. This is achieved with the built-in predicate,
canQuery(?U,7P), which allows another user U to query
the predicate, P. For example, the registrar at a univer-
sity might allow a teacher, T', to query the list of students
enrolled in courses that he teaches.

Example 4.5
canQuery(?T, enrolled) :- teaches(?T, 7C),
enrolled(?U, ?7C);

Handling Exposure. Users have the ability to write
policies that depend on the current exposure conditions.
Aggregation is an important prerequisite for achieving this

behavior [28], and Mumick et al. investigate extending Dat-
alog with aggregate operators [20]. They show that Datalog
can be efficiently extended with aggregate operators using
magic sets and semi-naive evaluation algorithms, which pro-
vide good heuristics over the naive, bottom-up approach. In
order to ensure the termination of Datalog programs, aggre-
gate operators are subject to restrictions such as stratifica-
tion [11]. In our case we provide special built-in predicates
that are restricted to aggregating over a logically separated
set of facts and predicates. This restriction is sufficient for
our purposes, as it allows PlexC policies to aggregate over
the audit log, for example. The following demonstrates how
aggregation over the audit log can be used to limit the fre-
quency of location sharing to no more than 5 times per day:

Example 4.6
canAccess (?X,LOCATION) :- accessCount(?X, 7N, 1,
00:00, 23:59), 7N <= 5;

Here, accessCount(?X, ?N, ?D, 7?73, 771%) invokes a
search of the audit log for the number of accesses N by
requester X between times T and 7> over the past D days.

In addition to aggregation over the audit log, users can
write rules that depend on their current exposure. Prior re-
search suggests that several factors contribute highly to an
individual’s notion of exposure, such as the social relation
of the requester [28], the frequency of requests [24], and the
surroundings at the time of request [5]. PlexC provides the
access to this information through built-in functions, predi-
cates, and language features, making it easy to define custom
exposure functions. For example, a user might define expo-
sure levels to be HIGH if the number of requests by strangers
in the audit log exceeds a certain threshold.

Example 4.7

canAccess (7X,LOCATION) :- exposure(7E), 7E <
MEDIUM ;

canAccess (?X,LOCATION,CITY) :- exposure(?E), 7E
>= MEDIUM;

Keeping the User in the Loop. In the study by
Patil et al. many participants expressed the desire to medi-
ate all requests for their personal information [24]. To this
end we introduce a built-in function prompt(?X,7R) that
prompts the current user to give requester X permission
to access resource R. Other participants simply wanted to
be notified for each request, so we define a similar function
notify(?X,7R), which notifies the user that requester X has
accessed resource R.

Additional Features. There have been a number of ex-
tensions to pure Datalog, some of which PlexC' incorporates.
These include built-in predicates, functions, and negation
[9]. PlezC includes support for basic equality, comparison,
and arithmetic operators. These can be viewed as infix pred-
icates except that the operands correspond to terms, and the
result of the atom is evaluated by the underlying implemen-
tation and does not depend on facts in the local knowledge-
base. The following rule demonstrates both a built-in func-
tion to test if the current day is a weekday, as well as the
built-in greater-than operator, and stipulates that location
requests are only permitted on weekdays between 9am—5pm:

Example 4.8
canAccess(?X, LOCATION) :- weekday(TODAY), NOW >
9:00, NOW < 17:00;

program : statement*

statement (fact | rule | query) ’;’

rule : literal ’:-’ literals [’®’ effects]

fact : atom

query : ’7’ literals

literals : atom (’,’ atom)*

literal : ’not’? atom

effects : effect (7, effect)x*

effect (’+’]°-?) atom

atom : [identifier ’.’] identifier tuple

tuple : 7 terms)’

terms : term (°,’ term)x*

term : function | variable | constant |
string | number

variable ’?’ constant

function : identifier tuple

Figure 3: The formal grammar of PlexC.

PlexC also supports several predicates to create named
regions, which are essentially locations on a map with
an associated radius. The region(7NAME, ?LAT,?7LON,?R)
predicate defines a region NAMUE centered at the co-
ordinate (LAT,LON) with radius R. The predicate
inRegion(?L,7NAME) tests if the location L is within the
region, NAME. Example 4.9 only allows members of a stu-
dent group to access location when the user is on campus:

Example 4.9
region(’campus’, 40.2, -100.2, 1km);
canAccess (7X,LOCATION) :- inRegion(MYLOC,

’campus’), member(7X, ’student’);

Furthermore, PlexC supports a limited form of negation.
Pure Datalog does not allow negation, which can threaten
the evaluation safety of programs. Typically, negation is
handled using stratification or the closed world assumption
(CWA). Stratification imposes an evaluation order on rules
where negated body predicates must be evaluated before
predicates in the rule head. CWA allows the inference of
negative ground facts if they do not appear in the EDB [9].
PlexC uses the CWA to handle negation.

Example 4.10 demonstrates a rule that uses negation to
implement an exclusion policy:

Example 4.10
canAccess(7X,LOCATION) : - not
member (?X, ’enemies’) ;

Finally, we support a set of built-in functional-symbols
that may depend on the deployment environment. For ex-
ample, a location-sharing application might contain a set
of functional-symbols to perform distance calculations, e.g.
within(?L1,7L2,7D) would return true if L1 and L2 are
within distance D. Similarly, functions that provide reverse
geocoding would be useful, such as city0f (?L), which would
return the city of the location coordinate L.

Figure 3 shows the grammar production rules for PlexC'.

4.4 Rule Evaluation

In typical Datalog systems extensional facts are applied
to rules in the intensional database to generate new facts
until no new facts can be generated (a fixed point). This

bottom-up approach is straightforward and can occur be-
fore handling queries. However, more expressive languages
do not take this approach to evaluate queries. One of the
reasons is that certain special predicates and function sym-
bols cannot be computed prior to receiving queries. For
example, some predicates and constants depend on current
time and location (e.g., accessCount, many types of rules
defining the canAccess relation), while others require the
user’s interaction (e.g., prompt).

Therefore, instead of using bottom-up strategies, mod-
ern expressive policy languages employ memoized, top-down
evaluation algorithms that combine the efficiency of goal-
oriented approaches while avoiding the non-termination is-
sues of standard SLD resolution used in Prolog [4].

Consider the following example:

Example 4.11

canAccess(7X, LOCATION) :- weekday(TODAY),
bob.member (?X, ’friend’),
accessCount (?X,?N,1,00:00,23:59), 7N <=5

Access to the current user’s location is contingent upon
several factors. First, the date is obtained and tested as a
parameter of weekday. Next, the second literal is a remote
predicate indicating that the requester needs to be a friend of
Bob. A query is therefore sent to Bob’s exported predicates
interface, and if Bob allows the current user to query this
predicate, and the requester belongs to the friend role, then
a positive result is returned. The accessCount predicate
invokes a query on the audit log and binds the number of
accesses by the requester (in the current day) to the free
variable N, and the last item tests that N is no more than
5.

S. EVALUATION

In this section we give an informal evaluation of the ex-
pressiveness of PlexC'. First, we show how PlexC meets all
of the language requirements outlined in Section 2.3. We
then show how a variety of common policy idioms can be
represented in PlexC'. Finally, we use PlexC to encode some
of the more interesting policies gathered from free-response
questions in the study conducted in [24].

5.1 Meeting All Language Requirements

Here we show how PlexC' achieves all of the requirements
outlined in Section 2.3.

e Groups and Roles: Example 4.2 demonstrates how to
define roles and limit access based on group membership.
Policy authors can create different roles and assign mem-
bership relations using the natural Datalog syntax.

e Delegation: Example 4.3 shows how delegation is possi-
ble in PlexC'. Delegation requires the evaluation of a rela-
tion whose records are not contained in the local knowl-
edge base.

e Disclosure Negotiation: Example 4.4 relies upon the
evaluation of remote predicates to exchange information
between the policy author and the requester until the con-
ditions for disclosure are satisfied.

e Side Effects: Example 4.1 shows how PlexC draws upon
existing syntax [3, 8] to specify changes to the authoriza-
tion state during the evaluation of rules.

e Disclosure Levels: The amount of detail in a disclosure
can be controlled by specifying the appropriate resource
identifier. For instance, Example 4.7 shows how the gran-
ularity of information to be disclosed can be adjusted.

e Time and Location rules: Time-based rules can be
expressed using the built-in constants that represent the
current time and day as shown in Example 4.8 and Ex-
ample 4.9, respectively.

e Aggregate Operations: PlexC provides support for ag-
gregation over the system audit log via special predicates.
This functionality can be seen in Example 4.6.

e Polymorphism: In Example 4.7 we encode a policy
whose behavior is dependent on the target user’s current
level of over-exposure.

5.2 Encoding Free-form Policies

Here we demonstrate the expressiveness and utility of
PlexC' by encoding some interesting and complex policies
taken from participant free responses gathered during the
study detailed by Patil et al. [24].

A number of participants expressed the desire for complete
mediation of all requests for their location. For example,
one such policy was: Keep my location private and ask every
time someone wants to know my location. This policy would
have the following implementation in PlezC':

Example 5.1
canAccess (?X,LOCATION) :- prompt (?X,LOCATION) ;

Another common response was that users wanted to be no-
tified after every location disclosure, but didn’t necessarily
need to know who had accessed their location. For exam-
ple, one user stated “Any time anyone views my location, I
must get a notification.” This rule is similar to the previous
example, but does not require direct interaction from the
user. One interpretation of this policy is that access should
be allowed to everyone as long as there is a notification:

Example 5.2
canAccess (?X,LOCATION) :- TRUE ®
notify(?X,LOCATION) ;

Another interpretation might be to modify any existing
rules by adding a notification upon success, in which case the
notify() predicate can be appended to the existing rules.

Location-based rules were also among the more unique
responses. For example, one participant wrote, “Allow users
to see when I am within a particular radius of them.” An
interesting implication of this is that the user wants to share
her location only when it could possibly be of use to the
recipient. This would be implemented in the following way:

Example 5.3
canAccess(?7X, LOCATION) :- get(?X, LOCATION,
?L1), within(mvyLOC, ?L1, 1km);

Many participants also indicated that they would not
want to share their location for social engagement pur-
poses. However, many of these otherwise unwilling users
of location-based services indicated that they would share
their location during emergency situations, e.g.: [would only
want someone to know my physical location in an emergency
situation. This introduces the difficult problem of determin-
ing when the user is experiencing an emergency. However,

one response provided some intuition: “only if I'm missing
for 24+ hours”. This policy could be approximated in the
following way:

Example 5.4

canAccess (7X,LOCATION) :- member(?X,’emergency’),
accessCount (ANYONE, ?N, 1, NOwW-24:00, NOwW), 7N
= 0;

By this encoding access is granted only if the requester
belongs to the ‘emergency’ role and the audit log shows that
nobody has received the user’s location in the past 24 hours.

6. DISCUSSION AND FUTURE WORK

Implementation. We are currently implementing PlexC
as part of a larger location-sharing application. We have al-
ready implemented several major components of the system,
including a mobile application to track current location and
view the locations of others, a web interface for managing
policies and carrying out more complex queries, and a server
application to store data and manage social relations. PlexC'
will be used as the fundamental access control component
to manage the information flow between the other system
components. We plan to use this testbed to better under-
stand the utility of PlexC, as well as to explore the system
design tradeoffs present in this space.

Validation of User Studies. The design of PlexC is
motivated by the collection of recent user studies described
in Section 2.2. However, these studies share a common lim-
itation: because these studies are based on user surveys,
they reveal only the perceived preferences and needs of par-
ticipants in an artificial environment. In other words, al-
though the participants in these studies are likely to have
given truthful answers to the surveys, there is a chance that
they would behave differently in a real-world scenario. While
it is not possible to completely account for all sources of re-
sponse bias in a lab setting, a field study of a fully functional
system would be able to mitigate these effects and support
or challenge the findings upon which PlexC' is based.

Usability of Policy Creation. PlexC allows users to cre-
ate concise policies for exposure management, and it inherits
many desirable traits from Datalog (e.g., unambiguous se-
mantics and tractable evaluation). However, we do not ex-
pect the average user to write rules in PlezC' directly. PlexC
was developed, instead, to represent a formal semantics for
exposure-aware policies. While it is possible to write PlexC
policies directly, we envision that most users will interact
with their policies via some form of structured policy editor.
We believe that a form-based rule editor would simplify the
creation of PlezC rules that are easy for users to understand,
while still taking advantage of the power of PlexC'. Striking
a good balance between usability and expressive power will
be an interesting research challenge.

7. SUMMARY

In this paper we address the development of PlezC:
a policy language for exposure control. —The concept
of exposure denotes the extent to which an individual’s
personal data is shared, and addresses the individual’s
resulting concern for privacy. Given the complexity of this
design space, we first articulate requirements for policy
languages for exposure control by analyzing the findings of

several recent survey studies addressing various facets of the
exposure problem. Not surprisingly, existing access control
policy languages are shown to be insufficient for meeting
the exposure control needs voiced by participants in these
studies. We present PlezC as a solution to meet the needs
of these participants. After describing the details of PlexC,
we show that it is both suitable for meeting the needs of
users in modern context-sharing systems, as well as capable
of encoding a variety of historically useful policy idioms.
Although PlexC was derived by examining surveys of users’
perceived exposure-control needs, further evaluation work
is still required. In particular our team plans to explore
the development of usable policy-management interfaces
and user studies of PlexC-based contextual sharing systems.

Acknowledgements. This research is supported by NSF
grants CCF-0916015, CNS-1016603, & CNS-1017229, and
US DHS grant 2006-CS-001-000001, under the auspices
of the Institute for Information Infrastructure Protection
(I3P). The contents of this paper do not necessarily reflect
the views of the sponsors.

8. REFERENCES

[1] M. Backes, M. Maffei, and K. Pecina. A security api
for distributed social networks. In NDSS, Feb. 2011.

[2] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL:
Design and semantics of a decentralized authorization
language. Journal of Computer Security, 2009.

[3] M. Y. Becker and S. Nanz. A Logic for
State-Modifying Authorization Policies. ACM
TISSEC, 13:20:1-20:28, July 2010.

[4] M. Y. Becker and P. Sewell. Cassandra: Distributed
Access Control Policies with Tunable Expressiveness.
In POLICY, pages 159-168, June 2004.

[5] J. T. Biehl, E. Rieffel, and A. J. Lee. When Privacy
and Utility are in Harmony: Towards Better Design of
Presence Technologies. Personal Ubiquitous
Computing, in press, Feb. 2012.

[6] M. Blaze, J. Feigenbaum, and A. D. Keromytis.
KeyNote: Trust Management for Public-Key
Infrastructures. In Infrastructures (Position Paper).
LNCS 1550, pages 59-63, 1998.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
Trust Management. In In Proceedings of the 1996
IEEE Symposium on Security and Privacy, pages
164-173, May 1996.

[8] A. J. Bonner. Transaction Datalog: a Compositional
Language for Transaction Programming. In In
Proceedings of the International Workshop on
Database Programming Languages, 1997.

[9] S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about datalog (and never dared to
ask). IEEE TKDE, 1:146-166, March 1989.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The ponder policy specification language. In POLICY,
pages 18-38, 2001.

[11] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and
G. Pfeifer. Aggregate functions in disjunctive logic
programming: semantics, complexity, and
implementation in dlv. In Proceedings of the 18th
international joint conference on Artificial
intelligence, pages 847-852, 2003.

[12] J. DeTreville. Binder, a logic-based security language.
In Proceedings of the IEEE Symposium on Security
and Privacy, pages 105-113, May 2002.

[13] Foursquare. http://www.foursquare.com/.

[14] Google+. https://plus.google.com/.

[15] C. A. Gunter, D. M. Liebovitz, and B. Malin.
Experience-based access management: A life-cycle
framework for identity and access management
systems. IEEE Security & Privacy Magazine, 9(5),
September/October 2011.

[16] A. J. Lee, T. Yu, and Y. L. Gall. Effective trust
management through a hybrid logical and relational
approach. In ASTIACCS, Apr. 2010.

[17] N. Li and J. C. Mitchell. RT: A role-based
trust-management framework. In Proceedings of the
DARPA Information Survivability Conference and
Exposition (DISCEX III), pages 201-212, Apr. 2003.

[18] Locaccino. http://locaccino.org/.

[19] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S. B. Eisenman, X. Zheng, and A. T.
Campbell. Sensing meets mobile social networks: the
design, implementation and evaluation of the
CenceMe application. In SenSys, pages 337-350, 2008.

[20] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The
magic of duplicates and aggregates. In VLDB, pages
264-277, 1990.

[21] L. E. Olson, C. A. Gunter, and P. Madhusudan. A
formal framework for reflective database access control
policies. In CCS, pages 289—298, 2008.

[22] J. Park and R. Sandhu. Towards usage control models:
beyond traditional access control. In SACMAT, pages
57-64, 2002.

[23] J. Park and R. Sandhu. The uconabc usage control
model. ACM TISSEC, 7(1):128-174, Feb. 2004.

[24] S. Patil, Y. L. Gall, A. J. Lee, and A. Kapadia. My
Privacy Policy: Exploring End-user Specification of
Freeform Location Access Rules. In Proceedings of the
Workshop on Usable Security (USEC), Mar. 2012.

[25] Facebook places. http://wuw.facebook.com/places/.

[26] N. Sadeh, J. Hong, L. Cranor, 1. Fette, P. Kelley,

M. Prabaker, and J. Rao. Understanding and
Capturing People’s Privacy Policies in a Mobile Social
Networking Application. Personal and Ubiquitous
Computing, 13:401-412, August 2009.

[27] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38-47, Feb. 1996.

[28] R. Schlegel, A. Kapadia, and A. J. Lee. Eyeing your
Exposure: Quantifying and Controlling Information
Sharing for Improved Privacy. In SOUPS, July 2011.

[29] K. E. Seamons, M. Winslett, T. Yu, B. Smith,

E. Child, J. Jacobson, H. Mills, and L. Yu.
Requirements for policy languages for trust
negotiation. In POLICY, pages 68-79, 2002.

[30] J. Y. Tsai, P. Kelley, P. Drielsma, L. F. Cranor,

J. Hong, and N. Sadeh. Who's viewed you?: the
impact of feedback in a mobile location-sharing
application. In ACM CHI, pages 2003-2012, 2009.

[31] W. Yao, K. Moody, and J. Bacon. A Model of OASIS
Role-Based Access Control and its Support for Active
Security. In SACMAT, pages 171-181, 2001.

http://www.foursquare.com/
https://plus.google.com/
http://locaccino.org/
http://www.facebook.com/places/

	Introduction
	Background and Requirements
	The exposure problem
	Recent Studies
	Language Requirements

	Related Work
	PlexC: System and Syntax
	System Model
	Datalog Overview
	PlexC
	Rule Evaluation

	Evaluation
	Meeting All Language Requirements
	Encoding Free-form Policies

	Discussion and Future Work
	Summary
	References

