
Searching for Open Windows and Unlocked Doors: Port Scanning in
Large-Scale Commodity Clusters

Adam J. Lee†‡, Gregory A. Koenig†‡, Xin Meng†, and William Yurcik†
†National Center for Supercomputing Applications

‡Department of Computer Science
University of Illinois, Urbana-Champaign

Champaign, IL 61820
{adamlee, koenig, xinmeng, byurcik}@ncsa.uiuc.edu

Abstract

Current methods for monitoring the security of large-
scale commodity clusters tend to treat these clusters as
nothing more than collections of independent nodes. As
such, the techniques used to secure these clusters have, for
the most part, been adaptations of techniques developed
for securing and monitoring enterprise computing environ-
ments. We have previously proposed the idea of monitoring
the security-state of large-scale commodity clusters by ex-
amining their emergent properties, that is, properties that
are only visible when one ceases to look at a cluster as a
collection of disparate nodes and begins to look at the prop-
erties of the cluster as a whole. We show that by correlating
the open network ports observed on cluster nodes with other
emergent properties—such as active processes and the con-
tents of important system files—security analysts can make
insightful observations that can greatly restrict the actions
that an attacker can carry out undetected.

1 Introduction

Over the course of the last decade, the average per-
formance of large-scale commodity clusters deployed in
academic, commercial, and research environments has in-
creased steadily [18]. This increase in performance, cou-
pled with the deployment of technologies that enable Grid
computing such as the Globus toolkit [7], has also lead
to an increase in the number of clusters deployed in these
environments [17]. While the scientific community has
embraced this explosion in computing power, the groups
tasked with monitoring the security-state of these clusters
have struggled to manage their systems.

In the past, clusters were treated in much the same man-
ner as enterprise computing environments, which is to say,

simply as large collections of independent machines. While
large-scale commodity clusters are in some sense simply
collections of nodes, the consequences of compromising a
single cluster node are much more severe than those of com-
promising a single enterprise node. In fact, the compromise
of a single cluster node or account can lead to a compromise
of the entire cluster. Grid computing has extended these de-
pendencies to exist not only within a single cluster, but to
span multiple clusters. This is one of the key factors behind
the TeraGrid compromises that occurred in the Spring of
2004 [8]. This wave of attacks clearly highlights the differ-
ences that exist between cluster and enterprise computing
environments. To mitigate damages caused by future clus-
ter compromises, security administrators must update their
current practices.

In a previous work, we advocate the concept of monitor-
ing the security of large-scale commodity clusters through
the examination of their emergent properties [20]. Unlike
an enterprise computing environment, the nodes of a cluster
can easily be partitioned into a small number of equivalence
classes (for example, compute nodes, head nodes, storage
nodes, etc.). Within each equivalence class, the member
nodes are essentially clones of one another that vary only in
predictable ways.

Armed with this knowledge, it becomes easier to glean
valuable security information through the comparison of
individual nodes to other nodes in their respective equiva-
lence class (or classes). Our experiences with the clusters at
NCSA have helped us to identify four sources of informa-
tion that can be used as described above: running processes,
critical file contents, open network ports, and network traf-
fic patterns.

In another work, we show that the set of processes run-
ning on a cluster can be monitored at a frequency of up to
once per second with negligible impact on the performance
of the cluster [10]. While an attacker cannot do anything



useful without running some process, it is possible that they
could modify the daemon process that reports back the pro-
cess list to mask their processes. For this reason, process
monitoring cannot be considered an end-all solution in the
quest to monitor the security of large-scale commodity clus-
ters.

In this paper, we show that by augmenting our previ-
ous process monitoring solution with scans for unautho-
rized open ports we can effectively “tighten the noose” on
would-be attackers by reducing the space of actions that can
be taken on the nodes of the cluster that can go by unde-
tected.

The remainder of this paper is organized as follows. In
Section 2 we discuss related work. Section 3 presents our
threat model. Section 4 discusses the architecture of our
monitoring solution, NVisionCC, and the means though
which data is collected. We discuss our port monitoring
implementation in Section 5 and present some preliminary
results in Section 6. We present our conclusions and a brief
discussion of future work in Section 7.

2 Related Work

2.1 Cluster Monitoring

Monitoring properties of large-scale commodity clus-
ters presents challenges not present in monitoring the same
properties on individual hosts. Several cluster monitoring
solutions have been presented in the literature, including
RVision [2], Supermon [14], and Ganglia [9]. These tools
support high sampling rates and have little performance im-
pact on the clusters that they monitor. However, these tools
mainly report performance statistics such as CPU utiliza-
tion, page fault rates, and network I/O statistics.

Clumon [4] is an open-source cluster performance mon-
itoring system developed at the National Center for Super-
computing Applications. Clumon provides a central repos-
itory for performance metrics collected from each node us-
ing PCP [13], information from the job scheduler, and any
metrics collected by user-developed plug-ins. We have built
a tool, NVisionCC, which leverages Clumon’s flexible ar-
chitecture and extends it to support the monitoring of secu-
rity properties of large-scale commodity clusters [22].

2.2 Port Scanning

Computer security analysts have long used port scanning
to aid in the task of monitoring large networks. Tools such
as Foundstone [3] and Nessus [12] incorporate port scan-
ning as a part of their functionality. One use of port scan-
ning in traditional security monitoring is to check for the
existence of hosts on the network being monitored. This

typically takes place via a “ping sweep” of the subnets be-
ing monitored. Other uses for port scanning include looking
for hosts running a particular service (e.g., an FTP server)
and ensuring that hosts are not violating the security poli-
cies of their domain by running illegal services.

In this paper, we present an extension to our cluster mon-
itoring tool, NVisionCC, that exploits the nature of large-
scale commodity clusters to enhance the ease with which il-
legal services can be detected. Enterprise monitoring tools
such as Foundstone and Nessus cannot make any assump-
tions about the environments that they will be deployed in,
so detecting illegal services often means that a human must
interpret scan results to find irregularities. We show that
a large amount of symmetry exists within the large-scale
commodity cluster environment and illustrate that our tool
can leverage this regularity to quickly and effectively detect
illegal services running on previously unoccupied ports or
masquerading as legitimate services.

3 Threat Model

Throughout this paper, we focus on the use of port scan-
ning as a single tool at the disposal of system administrators
tasked with monitoring the security state of large-scale com-
modity clusters. As such, we do not advocate the use of port
scanning to detect all forms of cluster intrusion, but rather
to locate only a particular class of attacks. Any anomalies
detected through the use of port scanning are meant to be
cross-referenced and correlated with the findings of other
security monitoring techniques—a task which our compre-
hensive cluster monitoring tool, NVisionCC, is designed to
carry out.

Port scanning allows system administrator to probe a
given network to determine information about the hosts
available on a given network, the ports open on each hosts,
and even information about the operating system and par-
ticular services running on each host. We assume that an
attacker who compromises a given node in a cluster and
opens a network port wishes to do so for the purpose of
providing a service to himself or others. Examples of such
services could include opening a back door into the system
or providing a file storage repository. This is in contrast to
situations where the mere existence of the open port is of
primary interest, e.g., if the existence of a port is used as a
covert channel. In addition, we assume that such services
can be opened on any port, not simply the well-known ports
of the services in question.

4 Architecture

In this section, we present an overview of the architec-
ture of our cluster security monitoring tool, NVisionCC.

2



Cluster Nodes

Web Server

Management Nodes

Host 
Collector

Security Analyzer

Alerts

Process
File Checksum

Network Ports
Network Traffic

Database

2

3

1 4

4

Information Collection

Security 
Analysis

Figure 1. The operation of NVisionCC consists of three steps: information collection, security anal-
ysis, and visualization. Key to this process is the central database of profiles and alerts.

NVisionCC is designed to be an extension of Clumon, a
widely used in cluster community as performance monitor-
ing tool. Our tool is designed to monitor the security state
of large numbers of cluster nodes in a manner that incurs a
minimal performance overhead.

Figure 1 provides an overview of the NVisionCC archi-
tecture. Security monitoring using NVisionCC is an iter-
ative three-step process: data of interest are collected from
the nodes being monitored, analyzed, and finally visualized.
Each of these steps is discussed in greater detail below.

4.1 Information Collection

During the information collection stage, various NVi-
sionCC plug-ins are activated to gather data of interest from
nodes on the cluster. While it would be impossible to
know everything about every host, from a security perspec-
tive, this is largely unnecessary. In a previous work, we
present several emergent properties of large-scale commod-
ity clusters—including running processes, critical file con-
tents, and open network ports—that may be useful for se-
curity analysis [20]. All configured monitoring plug-ins are
activated at a regular intervals that can be configured within
the NVisionCC interface.

4.2 Security Analysis

We have shown that the nodes of a large-scale commod-
ity cluster can be partitioned into equivalence classes and
that within these classes many security properties should

be the same [20]. In NVisionCC, we utilize a centralized
MySQL [11] database to store node class profiles for the
various properties that are being monitored. Such profiles
are usually easy for a cluster administrator to generate and
need only be changed as the cluster is upgraded. In general,
these profiles define the steady-state appearance of nodes on
the cluster. For instance, lists of running processes, hashes
of critical system files, or lists of open network ports are
potential properties that could be present in a node class
profile.

The node class profiles described above are vital to the
security analysis performed by NVisionCC. As data are
collected during the Information Collection stage, they are
compared with the existing profiles stored in the database.
Any values that differ from the stored node class profiles
generate alerts indicating a potential security breach. For
example, an alert would be generated if the process moni-
tor of a given node reports a process that is not listed in the
running processes profile for that node’s equivalence class.
These alerts are stored in the NVisionCC MySQL database.

4.3 Visualization and Management

A final objective of NVisionCC is to provide a user-
friendly interface to visualize alert conditions in the clus-
ter [21]. To accomplish this, NVisionCC presents a web
interface that allows security administrators to monitor the
state of an entire cluster in one screen. Administrators can
drill down to view the details of a particular node by click-
ing on that node.

In the following section, we illustrate the ways in which

3



port scanning can be used to detect security incidents in a
large-scale commodity cluster and describe our NVisionCC
plug-in designed to facilitate this task.

5 Port Scanning in the Cluster Environment

In this section, we discuss the benefits of port scanning
in a cluster environment and present an NVisionCC plug-in
designed to automate this process.

5.1 The Benefits of Port Scanning

Just as a baseline NVisionCC installation profiles the
running processes on cluster nodes based upon the obser-
vation that cluster nodes of the same type should be run-
ning the same processes, we can make a similar assump-
tion about the open ports present on a particular cluster
node. More specifically, cluster nodes of a given type
should have the same TCP and UDP ports open. There
are two main reasons that this assumption tends to hold in
practice. First, unallocated nodes are typically built from
the same system image and thus run the same network ser-
vices. Second, allocated nodes tend to communicate over a
high-bandwidth, low-latency fabric, such as Myrinet, rather
than over TCP/IP links, so additional TCP and UDP ports
are rarely opened while an allocated cluster node is in use.
A notable exception to this is the case of computational-
steering jobs, though this is easily accounted for in practice.

Given that uncompromised cluster nodes will tend to fol-
low a known open-port signature, it becomes very easy to
use port scanning as a tool to detect nodes that may have
been compromised. Many times, when an attacker com-
promises a host, the attacker installs some sort of remotely
accessible service on the compromised host. Examples of
these services include IRC “bots” that provide file stor-
age and access capability to users on the Internet [1] and
DDoS “zombies”that sit idly until awakened by a master
node which issues commands for the zombie to begin at-
tacking a particular target [19, 16, 15]. Given the high pro-
file of DDoS attacks and file sharing on the Internet in recent
years, the ability to detect these types of compromises in an
automated fashion is advantageous to security administra-
tors.

5.2 Plug-in Architecture

After it was observed that the open ports of cluster nodes
could be profiled easily, we began the development of an
NVisionCC plug-in that provides the monitoring and er-
ror reporting functionality needed to detect deviations from
these profiles. To facilitate such a plug-in, a repository was
needed to store the permissible open port signatures of the
various cluster node types. To this end, the NVisionCC

database has been augmented to store open port profiles for
the node types present in the cluster. Table 1 describes the
open ports table which contains these open port profiles.
To support easy population of theopen ports table, a
simple Perl script was written to convert the output from a
Nmap [5] scan of a single node into an open port profile for
a particular class of cluster node.

The port scanning plug-in itself was written in Perl and
scheduled with NVisionCC to be run at each “collection
interval.” The collection interval controls how often data
should be collected from the cluster and is tunable from
within the NVisionCC/Clumon interface. At each invoca-
tion, our plug-in gathers the list of node-types present in
the cluster being monitored. For each node type, our tool
retrieves a list of the nodes of this type from the database
along with the rows of theopen ports table pertaining to
this node type. An Nmap scan of these nodes is then con-
ducted, though the exact parameters of this scan can vary
depending on the exact usage scenario; several such sce-
narios are discussed in Section 5.3. By default, only idle
nodes and nodes that have not been scanned for some user-
defined period of time are scanned, as to avoid causing a
crash of poorly-written user code on the cluster. However,
in a highly utilized cluster, administrators may wish to scan
every node, regardless of its idle status. The plug-in can be
easily tuned to function in this way.

The main contribution of our tool is its ability to dis-
till the copious output generated by scans of thousands of
ports on thousands of hosts into a meaningful picture of
the security-state of the cluster. To accomplish this, the vi-
sualization capabilites of NVisionCC are leveraged. Upon
the detection of any illegal open ports or miscreant services
found to be masquerading on legitimate ports, an alert is
written into the NVisionCC error log. All alerts in this log
are visualized in the same fashion, making it trivial for secu-
rity administrators familiar with Clumon to incorporate port
scanning into their repertoire of security monitoring prac-
tices.

5.3 Usage Scenarios

As previously mentioned, Nmap is used to carry out the
actual port scans conducted by our plug-in. Nmap is an
extremely configurable tool and our plug-in is designed to
support a wide array of scan parameters.

By default, Nmap performs a TCPconnect() scan of
all ports listed in thenmap-services file. This type of
scan runs incredibly fast and is the default scan performed
by our tool. However, this scan type not only misses many
ports of interest, but completely ignores the UDP protocol.
For sites wishing for to implement custom scans, we sup-
port all of Nmap’s basic TCP and UDP scans. The “stealth”
scanning options were not tested, however, as it seems un-

4



Field Data Type Description
port int The port number that this row corresponds to
protocol char(5) The protocol that the above port should be open on (eg., TCP)
service char(50) An optional service description
host type char(60) The host type that this port should be open on

Table 1. The open ports table

likely that a network security administrator would need to
conceal the source of his scans from himself. When using
these “standard” port scanning methods, errors are logged
to the database when an illegal open port is detected.

A more interesting scan type is the “version scan” sup-
ported by Nmap [6]. This scan type probes open ports to
detect the actual service running on that port and any ver-
sion information that it can obtain, rather than reporting the
service name listed in thenmap-services file. Admin-
istrators can utilize theservice field in theopen ports
table to store the correct version information and have our
scanner compare the version information collected against
this fingerprint. In this way, illegal services running on ports
that are permitted to be open can be detected easily.

Version scanning takes a considerable amount of time
to run, however. Incorporating version scanning is perhaps
best done in addition to more rapid port scans that simply
probe for open ports. For instance, an administrator could
configure one instance of this plug-in to carry out rapid TCP
and UDP port scans of all ports on each cluster node. An-
other instance of the plug-in could be configured to version
scan only the permitted open ports. In this way, the admin-
istrator can be assured that no new ports are opened during
very short intervals, while the services running are probed
less often to look for malicious processes hiding on known
“good” ports. Configuring two instances of our plug-in is
an simple task, making this a viable scan technique.

6 Preliminary Performance Results

In this section we examine the overheads associated with
using port scanning to examine the security state of large-
scale commodity clusters. Specifically, we show that cluster
nodes can be scanned at a high enough rate to provide useful
insight into the security state of a cluster.

The timing measurements that we present were mea-
sured on a cluster with dual-processor nodes running Red
Hat Linux with kernel 2.4.21-15.ELsmp. The node per-
forming the scans was located on the same gigabit Ether-
net as the cluster nodes as to minimize round-trip times.
This configuration seems plausible in practice, as the entity
performing the security analysis of the cluster would likely
have the ability to attach monitor nodes to the Ethernet used
by the cluster. Measurements reported are averages over 10
scan trials.

6.1 Open TCP Port Scanning

The first type of scan that we examined was open TCP
port scanning. This type of scan will report whether or not a
service is running on a particular network port and the ser-
vice name for that port, as it is listed innmap-services
or /etc/services . To measure the speed of this scan
type, we had Nmap perform a TCPconnect() scan of
some subset of the 65535 TCP ports.

Scanning the 1601 ports listed in thenmap-services
file took on average 0.391 seconds. While this appears fast,
it is important to note that this type of scan would not dis-
cover any services running on unusual ports, most notably
those running on the ephemeral ports. A scan of the full
range of possible TCP ports took 4.219 seconds on average.

The rates observed scale linearly with the number of
hosts being scanned. Given this observation, all ports of
a 512-node cluster could be scanned in roughly 36 minutes.
If two monitoring nodes were to partition the IP space of the
cluster, the scan time could be reduced to about 18 minutes.
Given our assumption that services running on a compro-
mised node will do so for some time, monitoring the cluster
once an hour or even once a day would suffice, so a scan
time on the order of 15-30 minutes is perfectly reasonable
in practice.

6.2 TCP Version Scanning

As mentioned in Section 5.3, a nice complement to the
standard TCP port scan is Nmap’s TCP version scan. This
scan type probes open ports in an effort to determine the
service name and version running on that port. While the
TCPconnect() scan discussed above can be used to lo-
cate services running on previously unused ports, the ver-
sion scan can locate rogue services masquerading on legiti-
mate open ports.

Due to the probing nature of an Nmap version scan, these
scans take considerably longer than aconnect() scan to
complete. This, does not hinder its usefulness, however, as
we do not wish to version scan every possible port, simply
the ports defined as open in our cluster node profile. On
average, we found that it took 5.404 seconds to version scan
4 open ports. At this rate, it would take approximately 46
minutes to version scan the permissible open ports on a 512

5



node cluster, making this scan reasonable to carry out in
practice.

7 Conclusions and Future Work

We have previously proposed the idea of partitioning a
cluster into sets of equivalence classes based upon the func-
tionality of each node. Such equivalence classes may in-
clude the sets of compute nodes, head nodes, storage nodes,
and management nodes. Within each class, we have found
striking similarities between the member nodes. These sim-
ilarities are easily profiled and deviations from these pro-
files have been shown to occur during attack situations.
In [10], we showed that monitoring the list of running pro-
cesses could occur with minimal impact on the nodes com-
prising the cluster.

In this paper, we extended this profiling to include the
set of open network ports found on cluster nodes. We pro-
posed various scanning methods that are of use in the large-
scale commodity cluster environment. The cluster monitor-
ing tool NVisionCC was extended via a plug-in to carry out
the various scans described in this paper. Preliminary per-
formance results indicate that such scanning is possible to
carry out at a high enough frequency to be useful in practice.

In the future, we plan to examine different scanning fre-
quencies and determine the threshold at which port scan-
ning noticeably effects the performance of the cluster. In
addition, we hope to incorporate the examination of proper-
ties such as network traffic patterns and node log files into
our security monitoring toolkit. For instance, monitoring
the syslog files for the cluster as a whole could give insight
into attempted brute-force password-guessing attacks that
would otherwise go undetected on a single node, due to the
time delay between login attempts on each individual node.

References

[1] Eggheads.org: Eggdrop Development. Web Page, Nov.
2004.〈http://www.eggheads.org/ 〉.

[2] T. C. Ferreto, C. A. F. D. Rose, and L. D. Rose. RVision: An
Open and High Configurable Tool for Cluster Monitoring.
In IEEE Intl. Workshop on Cluster Computing, 2002.

[3] Foundstone. Web Page, Nov. 2004.〈http://www.
foundstone.com/ 〉.

[4] J. Fullop. Clumon. Web Page, Jul. 2004.〈http://
clumon.ncsa.uiuc.edu/ 〉.

[5] Fyodor. The art of port scanning.Phrack Magazine,
7(51), Sep. 1997. 〈http://www.insecure.org/
nmap/p51-11.txt 〉.

[6] Fyodor. Nmap version scanning.
Web Page, Apr. 2004.〈http://www.insecure.org/
nmap/versionscan.html 〉.

[7] The Globus Alliance. Web Page, Aug. 2004.〈http://
www.globus.org 〉.

[8] Grid Attacks Raise Concerns Among Security Experts.Grid
Today, 3(17), Apr. 2004. 〈http://www.gridtoday.
com/04/0426/103080.html 〉.

[9] F. Hoffman. Cluster Monitoring with Ganglia.Linux Mag-
azine, 2003.

[10] G. A. Koenig, X. Meng, A. J. Lee, M. Treaster, N. Kiyanclar,
and W. Yurcik. Cluster Security with NVisionCC: Process
Monitoring By Leveraging Emergent Properties. InIEEE
Cluster Computing and the Grid (CCGrid, May 2005.

[11] MySQL: The World’s Most Popular Open Source Database.
Web Page, Nov. 2004.〈http://www.mysql.com/ 〉.

[12] Nessus. Web Page, Nov. 2004.〈http://www.nessus.
org/ 〉.

[13] Performance Co-pilot. Web Page, Jul. 2004.〈http://
oss.sgi.com/projects/pcp 〉.

[14] M. Sottile and R. Minnich. Supermon: A High-Speed Clus-
ter Monitoring System. InIEEE Intl. Workshop on Cluster
Computing, 2002.

[15] CERT Advisory CA-2000-01 Denial-of-Service Develop-
ments (Stacheldracht). Web Page,
Jan. 2000. 〈http://www.cert.org/advisories/
CA-2000-01.html/ 〉.

[16] CERT Advisory CA-1999-17 Denial-of-Service Tools
(TFN2K). Web Page, Mar. 2000.〈http://www.cert.
org/advisories/CA-1999-17.html/ 〉.

[17] Charts for June 2004: Application Area/Systems. Web
Page, Jun. 2004.〈http://www.top500.org/lists/
2004/06/overtime.php?c=0 〉.

[18] Top 500 Performance Development. Web Page, Jun.
2004. 〈http://www.top500.org/lists/2004/
06/PerformanceDevelopment.php 〉.

[19] CERT Incident Note IN-99-07: Distributed Denial of Ser-
vice Tools (Trinoo). Web Page, Jan. 2001.〈http://www.
cert.org/incident notes/IN-99-07.html/ 〉.

[20] W. Yurcik, G. A. Koenig, X. Meng, and J. Greenseid. Clus-
ter Security as a Unique Problem with Emergent Properties:
Issues and Techniques. InThe 5th LCI International Con-
ference on Linux Clusters: The HPC Revolution 2004, May
2004.

[21] W. Yurcik, X. Meng, and N. Kiyanclar. NVisionCC: A Vi-
sualization Framework for High Performance Cluster Secu-
rity. In CCS Workshop on Visualization and Data Mining for
Computer Security (VizSEC/DMSEC), Oct. 2004.

[22] W. Yurcik, X. Meng, and G. A. Koenig. A Cluster Pro-
cess Monitoring Tool for Intrusion Detection: Proof-of-
Concept. In29th IEEE Conference on Local Computer Net-
works (LCN), 2004.

6


